
J. Fluid Mech. (2011), vol. 680, pp. 477–487. c© Cambridge University Press 2011

doi:10.1017/jfm.2011.210

477

Liquid spreading on superhydrophilic
micropillar arrays

SEONG JIN KIM1, MYOUNG-WOON MOON2,
KWANG-RYEOL LEE2, DAE-YOUNG LEE2,

YOUNG SOO CHANG3 AND HO-YOUNG KIM1†
1School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744, Korea

2Korea Institute of Science and Technology, Seoul 136-791, Korea
3Department of Advanced Fermentation Fusion Science and Technology, Kookmin University,

Seoul 136-702, Korea

(Received 29 July 2010; revised 21 April 2011; accepted 9 May 2011;

first published online 20 June 2011)

When a drop is deposited on a superhydrophilic micropillar array, the upper part of
the drop (referred to as the bulk) collapses while the bottom part penetrates into the
gaps of the array, forming a fringe film. Here we quantify the early stage dynamics
of this process using a combination of experiment and theory. We show that the
circular front of the fringe film spreads like t1/2, t being time, when coupled to the
bulk flow. However, the film is found to advance like t1/3 through faceted zippering
in the absence of the bulk. We then show that the spreading of the bulk and the
entire drop footprint follows a power law (t1/4) that is different from Washburn’s law.
This work can be a starting point to completely understand the spreading of liquids
on superhydrophilic surfaces and opens questions specific to superwetting behaviour
including the criteria to determine whether the fringe film will expand through lateral
zipping or advance radially outwards.
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1. Introduction
The spreading behaviour of a liquid drop on a highly wettable smooth solid surface

has been the subject of intense study for decades. By considering the forces exerted
on the drop including surface tension, gravity and viscous forces, several power laws
have been proposed to predict the degree of drop spreading with time. Tanner (1979)
first considered the spreading of a small liquid drop driven by surface tension and
resisted by viscosity to propose a power law of the spreading radius, R ∼ t1/10, where
t is time. For the late stage of spreading of a large drop mainly driven by gravity, the
radius increases with t1/8 and with t1/7 when the dissipation occurs in the bulk (Lopez
& Miller 1976; Huppert 1982) and near the contact line (Ehrhard 1993), respectively.
Biance, Clanet & Quéré (2004) showed that the inertia resists the capillary driven
spreading in the very early stages, leading to R ∼ t1/2.

When a solid surface is micropatterned, its intrinsic wettability is magnified so
that the hydrophilic surface becomes superhydrophilic. Even a superhydrophobic
surface can act as a superwetting surface for low-surface-tension liquids, such as oils
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Figure 1. (a) A scanning electron microscopy image of the square micropillar array covered
with (b) nanoscale roughness. (c) Schematic of the square micropillar array.

(McHale et al. 2004). Two important distinct features of the spreading behaviour on
the micropillar arrays were previously identified – the drop may spread into polygonal,
not circular, films depending on the wettability of the original smooth surface and
the geometry of the micropatterns, and the spreading edge propagates through a
zipping mechanism in the late stages of spreading so that the wet area expands by
filling the rows of pillars along the edge (Courbin et al. 2007). Such features were also
observed for the drop wetting into the micropillars of a superhydrophobic surface
(Sbragaglia et al. 2007) as air pockets supporting the drop collapse, corresponding
to the transition from the Cassie state (Cassie & Baxter 1944) to the Wenzel state
(Wenzel 1936). Wicking of a liquid film into vertically situated wettable micropillar
arrays against gravity was studied by Ishino et al. (2007). Reyssat et al. (2008) showed
that the geometric variations of the solid surface can modify the classical equation of
Washburn (1921) for the spreading rate.

When a drop is brought into contact with a superhydrophilic micropillar array,
the upper part of the drop, referred to as the bulk, collapses, while the bottom part
penetrates into the gaps of the array. The bulk vanishes towards the end of the
spreading process when the film extension dominates the flow. Although Courbin
et al. considered the spreading rate of a thin fringe film around the collapsing drop in
the late stages, it has not been investigated how the drop spreads in the early stages,
which we aim to address in this work. Since the mechanisms that induce the drop
collapse and the fringe propagation are qualitatively different, separate considerations
should be given for the macroscopic bulk flow and the microscopic film extension.
When coupled to the bulk flow, the circular front of the fringe film spreads initially,
but the film is found to advance through faceted zippering in the absence of the
bulk. We compare the film propagation rates of the two different modes, although
the criteria to determine whether the fringe film will expand through lateral zipping
or advance radially outwards are still unclear. In the following, we first describe
the experiments to observe the spreading of liquids on superhydrophilic micropillar
arrays. Then theoretical models – power laws – are constructed to elucidate the
physics underlying the spreading phenomena and experimentally corroborated.

2. Experiments
To fabricate micropillar arrays on an Si wafer, we etch the Si(1 0 0) surface using

the deep reactive ion etching process. Figure 1 shows the images of a resulting surface.
We vary the height (h), width (w) and spacing (d) of the square pillars as shown in
figure 1(c) to investigate the effects of the microtextures on the spreading dynamics, so
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Figure 2. (a) Schematic of a liquid drop spreading on a hydrophilic micropillar array. Rb

and Rt indicate the radii of the bulk and the entire drop footprint, and the length of fringe
layer L = Rt − Rb . (b) A top view and (c) a tilted view of a spreading silicone oil drop on
the micropillar array with [h, d,w] = [16, 15, 20] µm. (d) Linear and (e) log–log plot of the
experimentally measured spreading extents of a water drop with a = 0.7 mm deposited on a
micropillar array with [h, d,w] = [10, 20, 10] µm versus time.

that {h, w, d} ∈ [10 20] µm. The wafer is cleaned with Ar gas and then coated with the
Si–incorporated diamond-like carbon film using the gas mixture of benzene and silane
in a radio frequency–chemical vapour deposition chamber. Finally, oxygen plasma
etching is carried out to create hydrophilic Si–O bonds and nanoscale roughness
on the surface as shown in figure 1(b). For more detailed process conditions, see
Yi et al. (2010). The result is a hierarchical superhydrophilic surface, i.e. a highly
wettable surface with both micro- and nano-scopic roughness. As drop liquids, we
use deionized water with density ρ = 1000 kg m−3, viscosity µ = 1.3 × 10−3 Pa s and
surface tension γ = 0.074 Nm−1 and silicone oil with ρ =980 kgm−3, µ = 0.091 Pa s
and γ =0.021 N m−1. Both the liquids completely wet the micropillar arrays, thus
the equilibrium contact angle of the liquids with the surfaces is nearly zero. The
capillary length defined as lc =(γ /ρg)1/2 is 2.74 and 1.48 mm for water and silicone
oil, respectively. Drops of various radii, a ∈ [0.5 1.2] mm, are deposited on the
horizontally situated micropillar arrays using a polymeric micropipette (Rainin RC-
10/10). A high-speed camera system records the liquid motion at a frame rate up to
3000 s−1.

As figure 2 shows, the drop spreading on the superhydrophilic surface consists of
two distinct liquid motions – collapse of the bulk and propagation of the fringe film.
Both the liquids used in this work showed the similar behaviour. The imbibition in
the microscale roughness facilitates the collapse of the drop, and at the same time,
the collapsing drop can push the fringe film outwards. Figures 2(d) and 2(e) show the
measurement results using a water drop for the spreading radii of the bulk and the
entire footprint and the difference between them corresponding to the radial extension
of the fringe film.

Before analysing the spreading rates of the bulk and the fringe film, we first identify
the role of the bulk by comparing the film propagation behaviours with and without
the bulk. Thus we start with the film propagation in the absence of the collapsing
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Figure 3. (a) Propagation of a film emerging from the tip of a micropipette in contact with
the micropillar array. (b) Zipping of a protruding step along the liquid film edge. (c) Schematic
of the wet area expansion through the zipping mechanism. On each side, x and y denotes the
zipping and the expansion directions, respectively. (d) Edge propagation of films of water on
different micropillar arrays versus time, which follows the scaling law (3.6).

bulk. To realize such film propagation, it was found to be essential to prevent the
leakage of the bulk flow so that the liquid may wet only through the spacing between
the pillars. To this end, we bring the tip of the polymeric pipette or a thin hypodermic
needle onto the surface as shown in figures 3(a) and 4(a), respectively, and press the tip
onto the substrate to induce conformal contact between them before bulk leaks from
a gap either by capillarity or gravity. In what follows, we provide experimental results
and theoretical considerations for this film flow first and then those for the fringe
extension under the effect of the collapsing bulk. Finally we analyse the rate of the
bulk collapse to explain the spreading rate of the entire footprint in the early stages.

3. Propagation of film without bulk
We consider the motion of a liquid film as pulled out from a pipette tip by

capillarity as shown in figure 3(a). Figure 3(b) shows the images of the film edge
that visualize the emergence and the subsequent lateral propagation, or zipping, of a
protruding step. Now we consider the time it takes for the film edge to advance one
row through the zipping mechanism. It is the sum of the waiting period before the
pioneering step emerges out of the existing wet front and the time for the new row to
be filled with liquid. Our experiments reveal that the wait times (of the order of 1 ms)
are significantly shorter than the times for zipping of an entire row (of the order of
10–100 ms). For the square area consisting of 2n × 2n pillars as shown in figure 3(c)
to be wet, the zipping of rows must have occurred n times, assuming that the zipping
occurs on all the four sides. Therefore, if the time taken for each row to be wet is



Liquid spreading on superhydrophilic micropillar arrays 481

2 mm

200 µm

(a)

(b)
t = 0.003 s t = 0.011 s t = 0.021 s t = 0.033 s

t = 0.03 s t = 0.08 s t = 0.33 s t = 0.75 s

Figure 4. Comparison of the spreading behaviours of water films (a) in the absence of bulk
and (b) driven by the bulk on the identical micropillar arrays with h = 16 µm, d = 15 µm and
w = 20 µm. In (a), the flexible needle tip keeps its conformal contact with the substrate to
result in a film flow, whereas the drop with a = 0.7 mm is separated from the pipette at t = 0
in (b).

calculated, one can easily deduce how long it takes for a given size of a square area
to become wet.

Figure 3(c) schematically shows a liquid step zipping to the adjacent pillar. The
decrease of the interfacial energy as a pillar is newly wet is given by

δEz = γ (w + d)2 + (γSL − γSG)[(w + d)2 + 4wh], (3.1)

where γSL and γSG are the interfacial energy per unit area between solid and liquid,
and solid and gas, respectively. Here we note that w and d range between 10 and 20
µm thus the front displacement associated with the wetting of a single pillar, (w + d),
is significantly smaller than the side length of the entire film. Thus the interfacial
energy change associated with the wetting of the distance �x in the direction of
zipping can be written as �E = �xδEz/(w + d). Then we get the driving force that
causes the spontaneous wicking through zipping as the following:

Fd,z = −dE

dx
= (w + d)(r − 1)γ, (3.2)

where we have used Young’s equation, γ cos θe = γSG − γSL with the equilibrium
contact angle θe ≈ 0 and r is the roughness defined as the ratio of the actual surface
area to the projected area, so that r =1 + 4wh/(w + d)2. Although the top of pillars
is wetted by liquid in this work, we get Fd,z = γ (w + d)[r cos θe − 1 + φt (1 − cos θe)]
with φt = w2/(w + d)2 being the area fraction of the pillar top when the top remains
dry and the solid is partially wettable.

Investigating the images of a zipping front, we find that a dry pillar adjacent to the
curved wetting front, as designated by a thick arrow in the second image of figure 3(b),
is wetted by a contact line from the previous row of pillars. Since the entire wet area
is a thin film, the liquid that wets a new pillar and its neighbour must come from
the liquid source at the centre (pipette) a distance away of ∼y. Therefore, the viscous
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resisting force is scaled as Fr,z ∼ (w + d)yσ , where σ is the viscous shear stress as
estimated in the Appendix. For the zipping flow, σ ∼ (µr/h)(dx/dt). For the thin film
flow with the Reynolds number defined as Re =Uh/ν, Re ∼ 10−1 for water drops
and Re ∼ 10−3 for silicone oil drops, where U is the representative film propagation
speed and ν the kinematic viscosity, based on the experimental measurements; thus
we neglect the flow inertia. Now balancing the driving force Fd,z and the resisting
force Fr,z leads to the following relationship of the zipping distance x to time t:

x ∼ γ h(r − 1)

µry
t. (3.3)

When an edge of the wet area covering 2(k − 1) × 2(k − 1) pillars extends to the
next row, the zipping should occur over 2k pillars. Here we make a simplifying
assumption that a pioneering step emerges near the centre of each side and that the
zipping propagates in both +x and −x directions, which is commonly observed in
our experiments. Thus we consider the time taken for k pillars to be wet, tk , which
can be readily given by using (3.3):

tk ∼ µrk2(w + d)2

γ (r − 1)h
, (3.4)

where we used x = y = k(w + d). Therefore, the total time, t , taken for the film to
cover 2n × 2n pillars is

t =

n∑
k=1

tk ∼ µrn(n + 1)(2n + 1)(w + d)2

6γ (r − 1)h
. (3.5)

Noting that the distance of the edge of the film from the centre of the square wet area
is y = n(w + d) and that n � 1, we get the relationship between the film extension y

and time t as

y ∼ (Bt)1/3, (3.6)

where B = 3γ h(r − 1)(w + d)/(µr). This reveals that unlike the zipping that extends
with a constant velocity at a given y, the wetting front advances like t1/3. We compare
the theory with the experimental measurement of water films propagating on different
pillar arrays in figure 3(d), to show that the power law is in good agreement with
experiment. A linear regression analysis using the least square method finds the
proportionality constant in (3.6) to be 1.47, i.e. y ≈ 1.47(Bt)1/3.

4. Spreading of fringe film with bulk
Figure 4 compares the spreading behaviours of water films (a) in the absence of

bulk and (b) driven by the bulk on identical micropillary arrays. While the liquid wets
a square area in (a), it spreads into a circular area in (b). This clearly reveals the effect
of the bulk on the dynamics of film propagation. When the film spreads without the
bulk, it is driven by the localized process to reduce the free energy by wetting the
adjacent pillars – the free energy change associated with wetting an adjacent pillar
in the same row is δEz = −4whγ < 0 with θe ≈ 0. The energy change associated with
wetting a single pillar in the next row is δEa = 2h(d −w)γ , which is positive for d >w.
Even when it is negative with d < w, δEz < δEa , indicating that the zipping along the
edge is energetically more favourable than the radial expansion. On the other hand,
the circular area wetted by the fringe layer when coupled with the bulk implies that
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Figure 5. The distance between the outer edges of the bulk and the fringe, L, versus time
plotted according to the scaling law (4.1).

the film flow is no longer dominated by the localized imbibition into the gaps of
adjacent pillars.

Now we predict the circular spreading rate of the fringe whose radial extension
L = Rt − Rb, where Rt and Rb are the radius of the bottom of the entire drop and the
bulk, respectively. The Laplace pressure of the bulk and the fringe edge is estimated
as ∼γ (R−1

b + Hb/R
2
b) and ∼γ (R−1

t − h−1), respectively, where Hb is the bulk height.
Because h � Rb, h � Rt and h � R2

b/Hb, the driving capillary force, Fc, is dominantly
given by the meridional curvature (h−1) of the fringe edge. In a manner similar to
that used to derive (3.2), we obtain Fc by considering the surface energy change
associated with the increase of the fringe area, dEc = π[γ + r(γSL − γSG)]d(R2

t −
R2

b) ≈ −2πRt (r − 1)dL because L � Rb and L � Rt in the early spreading stages as
can be checked in figure 2(d). Then Fc = −dEc/dL =2πRt (r − 1)γ . The resisting force
scales as Fr,f ∼ πσ (R2

t − R2
b), where the shear stress σ is given in the Appendix.

Balancing the driving and the resisting forces leads to

L ∼
(

r − 1

r

γ h

µ

)1/2

t1/2, (4.1)

where we assumed that Rb and Rt scale similarly as will be verified in the next section.
The scaling law indicates that the fringe layer extends faster with the increase of the
roughness, the surface tension and the pillar height, and the decrease of the viscosity.
In a dimensionless form, we write L/a ∼ (t/τL)1/2, where the characteristic time scale
for the annular fringe layer to extend by a, τL = µa2r/[γ h(r −1)]. Figure 5 shows that
the experimentally measured values of L follow our scaling law. A linear regression
analysis finds the proportionality constant in (4.1) to be 0.256.

Our analysis reveals that the extension of the fringes with and without the bulk is
commonly caused by the capillary pressure associated with the meridional curvature
of the thin film (∼h−1). We compare the spreading speeds of the two kinds of fringes
in figure 6 together with the rate of increase of the bulk radius Rb which is given
in the next section. To find the rates, we take the time derivatives of the scaling
laws (3.6), (4.1) and (5.1) with the empirical proportionality constants. Figure 6(a)
shows that dRb/dt is initially greater than dy/dt , which suggests that when coupled
to a bulk collapse, the fringe film spreads (or is pushed by the bulk) too fast for the
contact line to be pinned temporarily on rows of pillars; thus circular spreading is
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Figure 6. Comparison of the rates of increase, dy/dt (solid line), dRb/dt (dashed line) and
dL/dt (dotted line), on the pillar array with h = d = 10 µm and w =15 µm. (a) The rates versus
time measured from the first contact of the water with the substrate. (b) The rates versus the
fringe film size: dy/dt versus y, and dRb/dt and dL/dt versus L.

observed. However, when we plot the expansion rates versus the distance that a liquid
should travel from the source to the edge of the fringe (L and y for the film with and
without bulk, respectively) in figure 6(b), it is found that dy/dt exceeds both dRb/dt

and dL/dt initially. This indicates that the liquid film can extend to the next row more
efficiently through the zipping mechanism than by advancing the entire contact line.
It is mainly because the gap between the rows of pillars is rapidly filled with liquid at
a rate dx/dt when the lateral zipping occurs, thus the next row gets wet faster than
when the circular spreading takes place. However, as the wetted area increases, the
time taken to fill the gap through zipping increases, so that the expansion by such a
mechanism becomes slower than the circular spreading.

5. Spreading of bulk and entire drop
Now we turn to a power law that can predict the rate of the bulk spreading

that occurs on top of the underlying film as illustrated in figure 2(a). The continual
expansion of the fringe film implies that the liquid in the bulk is drained into the
film causing the volume of the bulk to decrease with time. Consequently, the radius
of the bulk increases in the early stages of spreading but decreases in the late stages
before it vanishes eventually. Here we aim to understand the early time behaviour of
the bulk spreading.

On the prewetted surface that has been formed by liquid imbibition into the
forest of micropillars, the magnitude of the driving force for the bulk spreading
due to capillarity is Fd,b ∼ Rbγ (1 − cos θ), where θ is the advancing contact angle
(de Gennes 1985). Except for the extremely early stages where the drop is nearly
spherical, Hb � Rb; thus the lubrication approximation holds. The characteristic
velocity gradient in the bulk is of order Ṙb/Rb since there is effectively velocity
slip in the bottom due to fast drainage into pillar gaps (Brochard-Wyart, Debrégeas
& de Gennes 1996). Now balancing the viscous resistant force Fr,b ∼ µHbRb(Ṙb/Rb)
with Fd,b ∼ γRbθ

2 leads to Ṙb ∼ (γ /µ)(Hb/Rb), where we used θ ≈ Hb/Rb. The
temporal evolution of Hb is obtained by scaling the instantaneous bulk volume as
R2

bHb ∼ (4/3)πa3 − πhf (R2
t − R2

b), where f = 1 − w2/(w + d)2 corresponds to the ratio
of the basal area not covered by pillars to the entire projected area. By conservatively
taking R2

t − R2
b ∼ aL and using (4.1), it can be shown that the volume drained to the
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Figure 7. The experimentally measured (a) bulk radius and (b) entire footprint radius versus
time plotted according to the scaling law (5.1) and (5.2), respectively.

fringe, πhf (R2
t − R2

b), is negligibly small compared to the original drop volume when
t � tc, where tc = a4µr/[f 2γ h3(r −1)]. Then we write Hb ∼ (4/3)πa3/R2

b for t � tc. The
typical orders of tc are 10 and 104 s and the measurements of Rb were performed for
∼ 0.1 and 10 s for water and silicone oil drops, respectively. Then Rb is scaled as

Rb ∼
(

γ a3

µ

)1/4

t1/4 (5.1)

for t � tc. In a dimensionless form, we write Rb/a ∼ (t/τb)
1/4, where the characteristic

time for a bulk to spread by a is τb =µa/γ . Our scaling shows that the radius of
the bottom of the bulk increases like t1/4, and the rate increases with the initial drop
volume and the surface tension while decreasing with the viscosity. Figure 7(a) plots
the measured data of Rb with time according to the scaling law (5.1) for both water
and silicone oil showing that the experiments indeed follow our theory.

The radius of the entire drop footprint Rt = Rb + L. As quantitatively validated by
figure 2(d), the bulk occupies most of the footprint in the early stages of spreading.
Such a time range can be deduced by the condition Rb � L that leads to t � ti , where
ti ∼ a3µr2/[γ h2(r − 1)2] owing to the scalings (4.1) and (5.1). We find that ti ∼ 1 and
10 s for water and silicone oil, respectively, for currently tested size ranges of drops.
Then we anticipate that Rt will follow the same scaling law as Rb; thus we write

Rt ∼
(

γ a3

µ

)1/4

t1/4 (5.2)

for t � ti . Figure 7(b) shows that the experimentally measured radius of the entire
footprint follows our scaling law. A linear regression analysis finds the proportionality
constant in (5.1) and (5.2) to be 0.438 and 0.552, respectively. In the late stages where
L becomes comparable to Rb, the interaction between the collapsing bulk and the
wicking flow that originates from the bulk should be taken into account, which calls
for further study.

6. Conclusions
We have experimentally investigated the spreading of a liquid drop on

superhydrophilic micropillar arrays to find distinctive dynamics of the bulk and the
fringe within a single drop. Theoretical models to predict their spreading rates were
constructed, which yielded power laws that are in good agreement with experiments.
We conclude by discussing our results and their implications. We first showed that
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the film flow into a micropillar array arises through the zipping of rows of pillars as
a liquid emerges from a micropipette conformally touching the substrate to eliminate
the effect of bulk. On the other hand, when there is slight leakage from the pipette tip
or a drop is deposited on the substrate, the collapsing portion of the drop, i.e. bulk,
pushes a fringe film at a rate Ṙb and leads to circular film spreading. Although the
two film propagation modes are seemingly different (faceted versus circular), they
share the same dynamical ingredients, i.e. viscous forces resist the wicking force at the
periphery of the film. When the front propagation is driven by localized wetting of
individual pillars, zipping in the lateral direction could be shown to be energetically
more favourable than directly advancing to the next row. However, when the contact
line can advance in a way that multiple (s) pillars in the next row can be wet
simultaneously, the magnitude of the energy change δEa = 2h[w(1 − 2s) + d] < 0,
can be greater than |δEz|, or δEa < δEz for s > (d/w + 3)/2. Such an avalanche-like
behaviour may be closely related to the radially outward advancing of the contact
line, associated with axisymmetric spreading, when coupled to a bulk. More study is
required to elucidate the criteria to determine whether the contact line will zip laterally
or advance radially outwards. Considering the capillary forces exerted on a collapsing
bulk and the viscous resistance to the flow that effectively slips upon the underlying
layer enabled us to estimate the rate of the bulk spreading, which can be applied to
the prediction of the entire drop footprint radius in the early stages. Comparing the
time scales of the bulk spreading and the fringe extension also indicates that the bulk
spreading dominates the initial stages: τb/τL =(1 − 1/r)h/a � 1.

Our scaling laws can be a starting point to completely understand the spreading of
liquids on superhydrophilic microscopically rough surfaces, which is intrinsically
a multi-scale phenomenon, over an entire time range. It will require detailed
fluid flow computations considering both the macroscopic radial extension and the
microscopic wetting of individual pillars. Our results can be exploited in the analysis
of heat and mass transfer of thin spreading films over highly wettable surfaces,
whose applications include evaporative cooling (Maclaine-cross & Banks 1984) and
absorption refrigeration systems (Teng, Wang & Wu 1997). Also such applications as
paper-based microfluidics (Martinez, Phillips & Whitesides 2008) using liquid drops
that spread into porous paper can benefit from our analysis.

This work was supported by the National Research Foundation (grants 2009-
0067974 and 412-J03001) and KIST, and administered via SNU-IAMD.

Appendix. Shear stress on microdecorated surfaces
Here we estimate the shear stress exerted on a liquid wicking through a micropillar

array. The friction occurs due to the basal area, the pillar side walls and the top
surface of the pillars. In a unit cell of the micropillar array defined by the area,
(w + d) × (w + d), the viscous shear stress due to the basal area, σb, is scaled as
σb ∼ µL̇/hf , where L̇ is the characteristic spreading velocity and hf is the liquid film
thickness measured from the bottom of the surface. The stress due to the side walls
of the pillars σs ∼ µL̇/d . The pressure drop of the flow passing around a pillar is
�p ∼ µL̇/h, where we used the fact that hf ≈ h ≈ d in our experiments. This pressure
drop should hold for the flow on the pillar tops leading to L̇/h ∼ ut/ht , where ut and
ht = hf − h are the flow speed and the thickness of the liquid film on the pillar tops,
respectively. We find ut/L̇ � 1 because ht � h, which corresponds to the experimental
observation. Then the stress due to the top of the pillars scales as σt ∼ µL̇/h. Taking
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the total shear stress σ as a weighted average of those stresses, σ = φbσb +φtσt +φsσs ,
where φb, φt , φs is the area fraction of the base and the top and the sides of a pillar,
respectively, we get

σ ∼ µrL̇

h
. (A 1)
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