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Instability of a liquid jet emerging from a droplet upon collision
with a solid surface

H.-Y. Kim,a) Z. C. Feng,b) and J.-H. Chun
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139

~Received 3 November 1998; accepted 15 November 1999!

A linear perturbation theory is developed to investigate the interface instabilities of a
radially-expanding, liquid jet in cylindrical geometries. The theory is applied to rapidly spreading
droplets upon collision with solid surfaces as the fundamental mechanism behind splashing. The
analysis is based on the observation that the instability of the liquid sheet, i.e., the formation of the
fingers at the spreading front, develops in the extremely early stages of droplet impact. The shape
evolution of the interface in the very early stages of spreading is numerically simulated based on the
axisymmetric solutions obtained by a theoretical model. The effects that factors such as the transient
profile of an interface radius, the perturbation onset time, and the Weber number have on the
analysis results are examined. This study shows that a large impact inertia, associated with a high
Weber number, promotes interface instability, and prefers high wave number for maximum
instability. The numbers of fingers at the spreading front of droplets predicted by the model agree
well with those experimentally observed. ©2000 American Institute of Physics.
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I. INTRODUCTION

A droplet with large inertia frequently spreads with fi
gers extending from the edge when it impinges on a s
surface. Although the behavior of a spreading droplet a
colliding with a target plane has been the subject of inte
study for many years,1–7 comparatively less work has bee
done on a splashing droplet. Levin and Hobbs8 observed the
formation of a crown, i.e., the detachment of a watersh
from a target surface, when a water drop impinges on a c
per hemisphere. Stow and Hadfield9 photographed the earl
development of a watersheet emerging from the drop/ta
contact area, and were able to distinguish splashing drop
from nonsplashing ones by the release of an unstable w
sheet in the very early stages of spreading. Mundoet al.10

characterized the size and velocity of the secondary drop
produced from a droplet colliding with a rotating disk at
angle. Thoroddsen and Sakakibara11 were the first to perform
a systematic study on the evolution of the fingers develop
from a droplet interface spreading on a flat glass substr
Furthermore, recent experiments11,12 showed that the un
stable azimuthal undulation is a characteristic feature
splashing. For this reason, we consider splashing to be
unstable expansion of the spreading front in colliding dro
lets, including crown formation as an extreme case of spla
ing. In this work, we study a fundamental mechanism wh
induces the instability of the spreading front, proposing it
an origin of splashing.
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Science and Technology, Seoul 130-650, Korea.
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Significant experimental observations of splashing dr
lets are summarized as the following:~1! The instability is
observed in the very early stages of spreading;9,11 ~2! splash-
ing occurs when the impacting droplet has significant kine
energy as compared to surface energy and it is promote
rough target surfaces. A crown even develops under se
destabilizing conditions;9,10 ~3! increasing the impact inertia
increases the number of fingers,12 and this number slightly
decreases during spreading.11

A few articles10,11,13have addressed the origin of splas
ing, although no conclusive theory has been develop
Allen13 suggested that a radially decelerating interface o
spreading droplet be Rayleigh–Taylor unstable and ca
lated the wavelength of maximum instability based on
average deceleration required to bring the spreading to a
He modeled the radially extending flow into one-direction
plane motion and assumed that the deceleration was du
viscous damping. However, his model overlooks the effe
of changing interface length during spreading and the ef
of curvature on the instabilities. In addition, the selection
the representative deceleration is somewhat arbitrary. Mu
et al.10 suggested that the crown develops when the to
energy of a droplet prior to impact exceeds the amount
energy dissipated by viscosity during spreading. On the o
hand, Thoroddsen and Sakakibara11 contended that the fin
gering is due to the Rayleigh–Taylor instability of the dec
erating fluid ring at the droplet bottom before the drop
collides with a target.

In Fig. 1, we show rather interesting photographs o
splat formed by depositing a pure tin droplet on a 304 sta
less steel surface polished using a diamond paste. The
ture of the splat bottom@Fig. 1~b!# still exhibits the flow
pattern during spreading owing to the fast freezing of
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molten metal droplet. It shows that fingers which develop
at the splat edge in fact have their origins at the central a
of the splat. A closer look at the figure reveals that the fi
gers have completely developed around the central area,
approximately half of the radius of the original droplet.
follows that those fingers have already formed before t
start to be frozen, or before the spreading front rad
reaches one half the length of the original droplet’s radi
Consequently, this observation suggests that the forma
mechanism of the fingers can only be understood by stud
the behavior of the droplet right after the impact. The ea
stage of droplet impact is characterized by a rapid releas
a liquid jet.9,14,15Therefore, we must study the early behav
of a liquid jet released upon impact to understand the mec
nism of splashing. In this work, we propose the Rayleig

FIG. 1. Splashed tin splat.~a! Top of the splat.~b! Bottom of the splat. The
impact conditions: impact velocity53.5 m/s, initial droplet diameter52.6
mm, droplet temperature at impact5315 °C ~freezing temperature of pure
tin5232 °C!, target temperature530 °C, and We5203. The size and veloc
ity of the droplet were measured using a high speed video system~Kodak
Ektapro EM, Model 1012!. Droplet temperature was calculated using t
initial melt temperature and the flight distance.
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Taylor instability of the radially expanding sheet upon
generation, in cylindrical geometry, as a fundamental mec
nism of splashing. Our study is similar to Allen’s13 in that
both investigate the Rayleigh–Taylor instability of th
spreading front. However, here we consider the chang
interface length and curvature and suggest a different me
nism of liquid jet deceleration.

Although the Rayleigh–Taylor instability has been e
tensively studied for many years, most of the effort has b
focused on the plane16–19 and spherical geometries.20–23 In
particular, interests in cavitation bubbles, pulsations of
derwater explosion bubbles, and sonoluminescence24 have
brought attention to the dynamics of spherical bubbles. T
behavior of a gas bubble, in an incompressible liquid un
adiabatic or isothermal conditions, is described by
Rayleigh–Plesset~RP! equation.25,26 The distortion ampli-
tude of the spherical interface is governed by an equa
whose coefficients are time-dependent as ruled by the
equation. When the amplitude of the radial oscillation
small, the governing equations for the shape modes are
duced to Mathieu’s equation. On the other hand, Bren
et al.27 examined both the Rayleigh–Taylor and the param
ric instability mechanisms for a large amplitude case. In g
eral, numerical methods are required to analyze such a c

In the present work, we investigate the instabilities o
radially-expanding circular interface in cylindrical geom
etries. It is emphasized that our interest lies in studying
fundamental mechanism of the finger formation rather th
the finger evolution which was intensively investigated
Thoroddsen and Sakakibara.11 It is for this reason that we
employ the potential theory in modeling the high speed fl
in the very early stages of droplet impact. We do not exte
our theory beyond the limit where the viscous effects b
come important, in which stage fingers already genera
merely evolve. While the bubble dynamics are governed
the RP equation, the motion of the liquid sheet upon its
lease is ruled by the dynamics of the very early stages
droplet spreading. We first obtain a general equation gove
ing the azimuthal instability of an expanding sheet by us
domain perturbation methods and apply the results for
very initial stages of droplet impact. The dynamic conditio
of a droplet prior to impact are represented by the We
number in our analysis. Numerical simulation is employed
investigate the sensitivity of the instability analysis to t
modeling assumptions and the role of impact conditions.

II. DERIVATION OF THE AMPLITUDE EQUATION

Consider a radially-expanding liquid jet whose expa
sion rate, i.e., radial velocity as a function of time, is know
a priori. The stability of the edge of the two-dimensiona
liquid jet subjected to an azimuthal disturbance is inve
gated. Without disturbance, its shape is given only by tim
and its velocity is determined merely by time and radial d
tance. However, under the azimuthal disturbance, the lo
tion of the periphery is dependent upon an azimuthal an
u, as well as time, as shown in Fig. 2.

We nondimensionalize the flow parameters based on
characteristic radiusRD* and the characteristic velocityU* .
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In the case of liquid droplets,RD* andU* correspond to the
original droplet radius before impact and to the impact
locity, respectively. The characteristic time scale,t* , is
given byt* 5RD* /U* , and the velocity potential is scaled b
RD* U* . The following quantities are all nondimensionalize
based onRD* , U* , t* , andRD* U* , and Appendix A shows
their forms.

The velocity potential of the liquid,f, is defined such
that the radial velocity,n r , and the azimuthal velocity,nu ,
satisfy, respectively,

n r5
]f

]r
, ~1!

and

nu5
1

r

]f

]u
. ~2!

It is supposed that the velocity potential and the outer rad
of the fluid R are slightly disturbed, so that they are e
pressed as

f5f0~ t,r !1f1~ t,r ,u!, ~3!

and

R5R0~ t !1R1~ t,u!, ~4!

wheref0 and R0 denote the axisymmetric spreading so
tions andf1 andR1 are small perturbations. Due to the hig
Reynolds number associated with the high speed flow u
impact, we employ the governing equation for a poten
flow:

¹2f50. ~5!

We model the axisymmetric liquid expansion by a li
source at the center, giving the base flow solution as

f05M ~ t !ln r , ~6!

whereM is the strength of the source. Then the base solu
of the radial velocity is expressed as

]f0

]r
5

M

r
. ~7!

The kinematic boundary condition~KBC! at the edge of
the expanding fluid is

FIG. 2. Disturbed liquid sheet which expands radially.
-
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n
l

n

]f

]r
5

]R

]t
1

1

r 2

]f

]u

]R

]u
. ~8!

Using Eqs.~3! and ~4!, we rewrite KBC as

]f0

]r
1

]f1

]r
5

]R0

]t
1

]R1

]t
1

1

r 2

]f1

]u

]R1

]u
. ~9!

It is noted that KBC is imposed on a moving interface ar
5R01R1 , whose location is not knowna priori. Therefore,
the domain perturbation method is applied to find a bound
condition which is to be imposed on an unperturbed int
face. From the Taylor series expansion, we obtain the
lowing expressions which are correct to the first order:

S ]f0

]r D
r 5R01R1

'S ]f0

]r D
r 5R0

1R1S ]2f0

]r 2 D
r 5R0

, ~10!

S ]f1

]r D
r 5R01R1

'S ]f1

]r D
r 5R0

. ~11!

Hence, KBC to be imposed onr 5R0(t), for the zeroth or-
der, is

]f0

]r
5

]R0

]t
, ~12!

and KBC of the first order is, using Eq.~6!,

]f1

]r
5

]R1

]t
1R1

M

R0
2 . ~13!

In addition, combining Eqs.~7! and~12! gives the following
expressions forM:

M5R0Ṙ0 , ~14!

and

Ṁ5Ṙ0Ṙ01R̈0R0 . ~15!

The dynamic boundary condition~DBC! on a free sur-
face atr 5R01R1 is

]f

]t
1

1

2
u“fu21

k

We
5DP0 , ~16!

wherek denotes the curvature of the interface andDP0 the
pressure adjustment. The Weber number, We, is given
We5r* U* 2RD* /s* , r* and s* being the density and the
surface tension of the liquid, respectively. Accurate up to
first order, the curvaturek is expressed as

k'
1

R0
2

1

R0
2 S R11

]2R1

]u2 D . ~17!

Domain perturbation is again applied to the DBC to obtai
condition for the unperturbed interface. The DBC to be i
posed onr 5R0(t) for the first order is

R1S Ṁ

R0
2

M2

R0
3 D 1

]f1

]t
1

M

R0

]f1

]r
2

1

We

1

R0
2 S R11

]2R1

]u2 D50.

~18!

As a solution of the Laplace equation,f1 is expressed as
a superposition of normal modes:
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f15 (
m51

`

Am~ t !r m cosmu, ~19!

where only sinusoidal perturbations are considered. Cho
ing a potential which corresponds to a disturbance decr
ing away from the interface in the inward direction20 elimi-
nates terms havingr 2m from the solution of the Laplace
equation. Consequently, the shape perturbation is given

R15 (
m51

`

f m~ t !cosmu. ~20!

Substitution of Eqs.~19! and ~20! into Eq. ~13! yields

mAmR0
m215 ḟ m1

M

R0
2 f m . ~21!

After substituting Eqs.~19! and ~20!, Eq. ~18! becomes

f mF Ṁ

R0
2

M2

R0
3 1

~m221!

We

1

R0
G1R0

mȦm1mMR0
m22Am50.

~22!

Combining Eqs.~21! and~22!, we finally obtain an equation
for the shape perturbation amplitude,f m :

f̈ m1a~ t ! ḟ m1b~ t ! f m50, ~23!

wherea andb are given as the following, by virtue of Eqs
~14! and ~15!:

a~ t !52
Ṙ0

R0
, ~24!

b~ t !5
~m11!

R0
3 Fm~m21!

We
1R0

2R̈0G . ~25!

In a special case whereR0 is kept at unity throughout time
the frequency for themth mode perturbation,vm , is given
by

vm
2 5Fm~m221!

We G1/2

, ~26!

which is identical to Chandrasekhar’s result.28 See Appendix
B for details.

In short, Eq.~23! describes the development of an a
muthal perturbation on a cylindrical spreading sheet. T
coefficients are known if the spreading dynamics are kno
We note that Eq.~23! is a second order linear ordinary di
ferential equation with variable coefficients. This equati
cannot be solved analytically, although stability of the so
tion can be obtained for limit cases when the coefficients
periodic functions oft.

III. NUMERICAL SIMULATION RESULTS

We begin to investigate the instability by obtaining t
base flow solutions. According to the Bowden and Fie
model,5 we expect an immediate generation of a liquid jet
impact when the Mach number, Ma5U* /c* , U* being the
impact velocity andc* the sound speed in the liquid me
dium, is very small. To obtain the base flow solution, i.e.,
expansion rate of the liquid jet or contact area, consider
s-
s-

y

e
n.

-
re

e
e

following simplified case. Suppose that the descending sp
of a droplet upon impact is invariant from its original spee
which is often observed in the early stages of spreading9,11

As shown in Fig. 3~a!, we assume that the bottom of th
spherical droplet is displaced to the periphery of the drop
spreading on the surface, resulting in the shape o
truncated-sphere-on-cylinder. Using volume conservat
the radius of the cylinder, or contact radius, is calculated
be

j15F3

2
2

9

8
s22

1

2 S 81

16
s42

27

2
s2112s23D 1/2G1/2

, ~27!

wheres512t (0,t,1/3). For t!1, j1'2t1/2. It is inter-
esting to note that if the droplet continues to travel af
hitting the surface as if the surface did not exist@see Fig.
3~b!#, the radius of the intersecting area is expressed aj2

5(2t2t2)1/2, which is approximated to bej2'(2t)1/2 for t
!1. Supposing that the expanding liquid jet exhibits t
same tendency asj’s modeled above upon its generation, w
write

FIG. 3. Limiting cases of droplet spreading. The original droplet radius
velocity are both unity after nondimensionalization.~a! Volume V1 is dis-
placed toV2 while the droplet descends with the speed of unity. The cyl
der radiusj1 is expressed as Eq.~27!. ~b! j2 is the intersection radius of the
target surface and the droplet traveling with no deformation.
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R05At1/2, ~28!

where the coefficientA is dependent upon the impact cond
tions of the droplet. Figure 4 shows the radius and decel
tion profiles for the expanding liquid sheet depending on
value ofA.

Asymptotic theories of Korobkin and Pukhnachov29 and
a simplified analysis of Oguz and Prosperetti30 also yield the
same time dependence as our limit analysis, providing a
oretical justification of our model. On the other hand, expe
mental data on the initial stages of droplet impact are har
find, due to the limitations in the experimental techniqu
We recall that the fingers shown in Fig. 1 have already
veloped when the contact area reaches only a half radiu
the original droplet. In many experiments,6,7,9,31the radius of
the contact area reaches more than that of the original dro

FIG. 4. ~a! Transient radius profiles of an expanding liquid sheet expres
as R05At1/2. ~b! Corresponding deceleration. Note that the significant
celeration is experienced by the interface immediately after impact, w
drives the Rayleigh–Taylor instability.
a-
e

e-
-
to
.
-
of

let

near t51/3. The timet51/3 corresponds, for example, t
500 ms for a droplet with a radius of 3 mm and an impa
velocity of 2 m/s. Consequently, it is very difficult to mea
sure the ‘‘temporal evolution’’ of the contact area radius d
ing the very short period from the moment of impact. Mo
experiments7,31–36 reported to date present at most 2 da
points in the time span of our interest. Other experimen
results6,9,37 presenting at least 3 points in that time rang
appear to agree with the time dependence modeled by
theoretical considerations above.

In the context of the Rayleigh–Taylor instability, whe
the expanding liquid decelerates with respect to a lighter
mospheric gas, the liquid tends to be destabilized while
surface tension has a stabilizing effect. It is possible to
proximately predict stability by observing the behavior of t
coefficientsa andb or by canonical transformation~see Ap-
pendix C!. However, because of the time-dependent coe
cients of Eq.~23!, only numerical simulation can exactl
predict the wave number of maximum instability and the r
of growth for the shape perturbation. Based on the base
lutions, we numerically solve Eq.~23! under given initial

conditions such asf m51 and ḟ m50, and f m50 and ḟ m

51. The modified Euler method has been employed to so
the initial value problem.38

Factors which determine the magnitude of decelerat
of a liquid interface, i.e., the driving mechanism of th
Rayleigh–Taylor instability, include the coefficientA and the
initiation time of perturbation. According to the asymptot
theories,29 when a perfectly spherical droplet hits the targ
plane,A is calculated to be 31/2 in the present nondimension
alization, which lies between our limiting cases ofj1 andj2 .
In reality,A is supposed to be dependent upon droplet imp
conditions as well as the surface curvature of the impac
droplet. Mathematical singularity occurs ast→0 when both
the velocity and the deceleration of the sheet reach infin
The sheet emerges from a finite initial radius which cor
sponds to a finite nonzero initiation time. Since it is not cle
yet when the liquid sheet emerges, we examine the sens
ity of the perturbation analysis to the perturbation onset ti
t i . In the meantime, the effects of impact inertia and surfa
tension are manifested through the Weber number in
analysis. The presence of surface tension, which stabil
the interface, leads to the mode of maximum instability.
the following we present the numerical simulation resu
including the roles of such parameters as described abo

Figure 5 shows the temporal evolution of shape pert
bations for different wave numbers. For a computation ti
range, we use the limit to which Eq.~27! holds, i.e., t
51/3. Perturbations of different wave numbers compete w
one another and the mode number of maximum instab
varies with time, unlike time-independent coefficient sy
tems. In addition, neither the growth rate of the perturbat
nor the cutoff wave number is easily defined. As predicted
Appendix C, the perturbations of high wave numbers
stabilized ast increases although the instants when the a
plitudes alter their slopes do not exactly coincide with tho
at which theb’s change sign. In Fig. 5, the perturbatio
amplitude ofm556 even decays to a value less than t

d
-
h
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536 Phys. Fluids, Vol. 12, No. 3, March 2000 Kim, Feng, and Chun
initially assigned one beforet reaches 1/3. We define such
wave number that is less than the so-found wave numbe
one, as a pseudo-cutoff wave number. In this case, it is
Note that our definition of the pseudo-cutoff wave numbe
different from the criteria used in Appendix C, which a
used to judge whether the perturbation amplitudes will gr
unboundedly.

Figure 6~a! shows that there exists a wave number wh
maximizes the amplitude perturbation at every moment d
ing spreading. Furthermore, the number tends to slightly
crease during spreading@Fig. 6~b!#, which appears to coin
cide with an experimentally observed reduction in t
number of fingers at the spreading edge.11 More studies are
required to understand how fingers merge during sprea

FIG. 5. ~a! Temporal evolution of the shape amplitudes of various wa
numbers untilt50.1. ~b! Temporal evolution of the shape amplitudes un

t51/3. Initial conditions att5t i are f m51 andḟ m50. The computation was
performed forR052t1/2, t i50.01, and We5500. Perturbations ofm540
and 50 are exceeded by that ofm536 during spreading. Perturbations o
m550, 55, and 56 decay after an initially growing period.
by
5.
s

r-
e-

g

and which wave number manifests itself in the competiti
of many modes during spreading. Such questions can be
swered by considering the nonlinear effects of finite amp
tude perturbations, which are beyond the scope of the pre
work. Nonetheless, according to our linear theory, high wa
numbers excited in the earlier stages of impact are ov
whelmed by lower wave numbers in the course of spread
as deceleration decreases. Figure 7 shows the develop
of azimuthal disturbances at the modes of maximum ins
bility based on the simulation results. A droplet with a high
Weber number@We5500, Fig. 7~b!# develops a much more
unstable spreading front than one with a lower Weber nu
ber @We550, Fig. 7~a!#.

Effects of the coefficientA, or the expansion rate of the

FIG. 6. ~a! Perturbation amplitude versus wave numbers for different tim

Initial conditions for solid lines aref m51 and ḟ m50. Initial conditions for

a dotted line aref m50 and ḟ m5100. The computation was performed fo
R052t1/2, t i50.01, and We5500. ~b! Changes of a mode number of max
mum instability and a pseudo-cutoff wave number with time. Computat
conditions are those of the solid lines in~a!.
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liquid sheet, on instability are shown in Fig. 8. We note th
when the sheet radius is given by Eq.~28!, a high expansion
rate due to largeA results in a high magnitude of deceler
tion, which eventually promotes the instability of high
wave numbers. Figure 9 illustrates the effect of perturbat
onset time on instability. Perturbations initiated earlier e
hibit larger deceleration, thus promoting instability of high
wave numbers. However, it is noteworthy that the analy

FIG. 7. Growth of azimuthal disturbances during spreading at the mode

maximum instability. Initial conditions aref m5131024 and ḟ m50. The
computation was performed forR052t1/2 andt i50.01.~a! Shape evolutions
when We550. From the innermost corrugated circle,t50.06(m515),
0.12(m514), 0.24(m512), 1/3(m512). ~b! Shape evolutions when We
5500. From the innermost corrugated circle,t50.06(m547), 0.12(m
542), 0.24(m538), 1/3(m536).
t

n
-
r
is

results of the wave number of maximum instability are rath
insensitive tot i . Figure 10 presents the role of the Web
number on the instability. As the Weber number increas
i.e., when the effect of surface tension is weakened and
of inertia is strengthened, a greater number of high mo
are excited and perturbation amplitudes increase, as pr
ously illustrated by Fig. 7. This is consistent with the Ma
manis and Thoroddsen12 observation that higher impac
speed results in a greater number of fingers.

We compare our numerical results with available expe
mental data. Thoroddsen and Sakakibara11 counted the num-
ber of fingers of a spreading droplet with We5510 in the
present definition of the Weber number, and its spread
diameter versus time was measured as well. According to
spreading diameter measurement, the value ofA for the
droplet is approximately 2.2 based on the fact that the fi

of

FIG. 8. Effect of the coefficientA on instability. The computation was
performed fort i50.01 and We5500. ~a! Wave number of maximum insta
bility versusA. ~b! Perturbation amplitude of those numbers versusA.
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data point of their measurement is located atR0'2 whent
'0.8, in the present nondimensionalization. As discus
earlier,A depends on the surface curvature of the impact
droplet which was not maintained as perfectly spherical d
ing the experiments. Our simulation predicts that the wa
number of maximum instability for the condition is 63 at th
nondimensionalized timet50.1 with t i5531024. It is re-
called that our analysis results are not very sensitive tot i ,
e.g., the wave number of maximum instability is 50 at
50.1 with t i50.01. Assuming that the number of finge
initially generated does not change significantly duri
spreading, as supported by Fig. 1 and Thoroddsen
Sakakibara,11 the predicted wave numbers are in good agr
ment with their measured values~Fig. 14 of Thoroddsen and
Sakakibara11!. In addition, we compare our simulation re
sults with the splat shown in Fig. 1, which has approximat

FIG. 9. Effect of the perturbation onset timet i on instability. The compu-
tation was performed forR052t1/2 and We5500. ~a! Wave number of
maximum instability versust i . ~b! Perturbation amplitude of those numbe
versust i .
d
g
r-
e

nd
-

y

33 fingers. We setA52.2, based on the available spreadi
radius measurement in the very early stages of droplet
pact with a somewhat similar Weber number—300~Stow
and Hadfield,9 Fig. 15!. Our numerical simulation predict
that the wave number of maximum instability att50.1 is 40
with t i5531024, and 32 witht i50.01, which agrees wel
with the experimental measurement.

IV. CONCLUSIONS

We developed a linear perturbation theory of interfa
instabilities of a radially-expanding, liquid sheet in cylindr
cal geometries. The theory was applied to an expanding
under a spreading droplet as a proposed mechanism
splashing. Our analysis was restricted to the very early sta
of droplet impact, i.e.,t,1/3. It is because we are intereste
in studying the fundamental mechanism of the finger form

FIG. 10. Effect of We on instability. The computation was performed
R052t1/2 and t i50.01. ~a! Wave number of maximum instability versu
We. ~b! Perturbation amplitude of those numbers versus We.
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tion rather than the finger evolution. Based on a theoret
model on the contact area expansion in the very early sta
of droplet impact, significant deceleration upon the collisi
triggered the Rayleigh–Taylor instability. The perturbati
theory was able to predict the most rapidly growing mode
azimuthal disturbance and its growth rate at each instant
ing spreading. The mode number of maximum instabi
changed because of time-dependent coefficients in the am
tude equation. We examined the effects of several par
eters on the analysis results, including the transient profil
an interface radius, i.e., the coefficientA, the perturbation
onset timet i , and the Weber number. Experimentally o
served number of fingers at the spreading fronts were c
pared with our predictions, and they agreed well.

It is noted that the parameters examined above,A, t i ,
and We, may be interrelated with one another in reality:
impact conditions including the droplet size, velocity, a
the surface curvature, not only affect the Weber number,
they also determine the collapsing dynamics of the dro
and its sheet expansion characteristics:A andt i . In addition,
it is known that substrate roughness plays a significant
in splashing.9 The roughness may affect the values ofA and
t i , change the mode of the maximum instability, and des
bilize the perturbation for a given wave number. Moreov
as the spreading progresses beyond the very initial sta
the azimuthal perturbation grows and nonlinear interacti
between modes such as those reported by Thoroddsen
Sakakibara11 take place. Although it is possible to extend o
analysis to include weakly nonlinear terms, such an ef
must be combined with including the viscosity in the ana
sis since soon after the initial stage, the viscous terms ca
longer be ignored. To develop an understanding of these
ics, future studies are required.

In conclusion, we propose the Rayleigh–Taylor instab
ity as a mechanism to destabilize the rapidly expanding
uid jet, released upon droplet collision with a solid targ
Numerical simulations of the temporal evolution of sha
perturbations are able to determine the most rapidly grow
wave number and the growth rate of perturbation amplitud
Our analysis reveals that larger impact inertia associated
a higher We, and thus presumably a higherA, promotes in-
terface instability, and prefers a higher wave number
maximum instability. We relate this instability to the fund
mental mechanism behind splashing, or fingering, of impa
ing droplets which is initiated in the very early stages
impact.
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APPENDIX A: NONDIMENSIONAL QUANTITIES

The following gives the definitions of the nondime
sional quantities used above. Note that all the asteris
symbols denote dimensional quantities, whereas nona
isked symbols are the corresponding nondimensional qua
ties:
al
es

f
r-

li-
-

of

-

e

ut
t

le

-
,
es,
s
nd

rt
-
no
p-

-
-
.

g
s.
th

r

t-
f

f
-

d
er-
ti-

Am5
Am* RD*

~m21!

U*
, f m5

f m*

RD*
, M5

M*

RD* U*
,

r 5
r *

RD*
, R5

R*

RD*
, Ri5

Ri*

RD*
~ i 50,1!,

n r5
n r*

U*
, nu5

nu*

U*
, t5

t*

t*
,

DP05
DP0*

r* U* 2 , f5
f*

RD* U*
,

f i5
f i*

RD* U*
~ i 50,1!,

k5k* RD* .

APPENDIX B: THE OSCILLATION FREQUENCY OF
PERTURBATIONS TO A CONSTANT RADIUS
LIQUID SHEET

In Chandrasekhar,28 the frequency for themth mode azi-
muthal perturbation on a columnar liquid jetvm is given by,
in the present nondimensionalization,

vm
2 5

1

R0
3We

xIm8 ~x!

I m~x!
~m21x221!, ~B1!

wherex5kR0 , k denoting the wave number in the lengt
wise direction, andI m is the modified Bessel function of th
first kind, of orderm. We show that for a two-dimensiona
liquid sheet whose unperturbed radiusR0 is kept unity, Eq.
~B1! is reduced to Eq.~26!. Using the following identities:39

I m8 ~k!5I m11~k!1
m

k
I m~k!, ~B2!

I m~k!5(
j 50

`
~k/2!2 j 1m

j ! ~ j 1m!!
, ~B3!

we find

lim
k→0

kIm8 ~k!

I m~k!
5m. ~B4!

Therefore, in the limitk→0, Eq.~B1! is identical to Eq.~26!.

APPENDIX C: PREDICTIONS OF THE SHAPE
STABILITIES

It is possible to predict stability of the equation for th
shape perturbation amplitude, Eq.~23!, in an approximate
manner as the following. First, we approximate the stabi
by observing the behavior of the coefficientsa andb. Figure
11 showsa andb as functions of time, based on Eq.~28!. In
general, positivea, as shown in Fig. 11~a!, corresponds to
the positive energy dissipation, thus it has a stabilizing
fect. The coefficient,b, the restoring term, is negative a
small t for all wave numbers shown in Fig. 11~b!, thus it
destabilizes the interface. For high wave numbers,b eventu-
ally becomes positive during spreading due to the surf
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tension, thus it stabilizes the high mode perturbations.
value ofm under whichb remains negative, denoted asm1 ,
is calculated to be

m15
1

2 F11S 11
A3 We

t1/2 D 1/2G . ~C1!

Next, we predict the stability by employing the follow
ing canonical transformation:

Fm~ t !5g~ t ! f m~ t !, ~C2!

where the functiong(t) is given by

g~ t !5expF1

2 E a~ t !dtG . ~C3!

We then obtain the transformed equation forFm(t) as

F̈m1bm~ t !Fm50, ~C4!

FIG. 11. The coefficients of Eq.~23! whenR052t1/2 and We5500.~a! The
coefficienta is given bya51/t. ~b! The coefficientb versus time for various
wave numbers.
e

where

bm~ t !5b2 1
2 ȧ2 1

4 a2. ~C5!

The quantitybm(t) determines whetherFm(t) is oscillatory
or nonoscillatory. Sincef m5g21Fm and a(t) is positive
@Fig. 11~a!#, the mode that will grow unboundedly is nece
sarily a mode for whichbm(t),0. The value ofm, under
which bm(t) remains negative, denoted asm2 , is calculated
to be

m25S A3 We

4t1/2 11D 1/2

. ~C6!

Figure 12~a! showsm1 and m2 versus time during ex-
pansion of the liquid sheet whenA52 and We5500. The

FIG. 12. ~a! The wave numbersm1 andm2 versus time. The wave number
of maximum instability~circles! are from Fig. 6.~b! Normalized differences
of m1 andm2 versus time at different Weber numbers.
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wave numbers of maximum instability are also shown
comparison. The values ofm1 and m2 appear to be almos
identical. The normalized differences ofm1 and m2 are
shown in Fig. 12~b!. They are indeed fairly close for differ
ent Weber numbers.
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