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Instability of a liquid jet emerging from a droplet upon collision
with a solid surface
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A linear perturbation theory is developed to investigate the interface instabilities of a
radially-expanding, liquid jet in cylindrical geometries. The theory is applied to rapidly spreading
droplets upon collision with solid surfaces as the fundamental mechanism behind splashing. The
analysis is based on the observation that the instability of the liquid sheet, i.e., the formation of the
fingers at the spreading front, develops in the extremely early stages of droplet impact. The shape
evolution of the interface in the very early stages of spreading is numerically simulated based on the
axisymmetric solutions obtained by a theoretical model. The effects that factors such as the transient
profile of an interface radius, the perturbation onset time, and the Weber number have on the
analysis results are examined. This study shows that a large impact inertia, associated with a high
Weber number, promotes interface instability, and prefers high wave number for maximum
instability. The numbers of fingers at the spreading front of droplets predicted by the model agree
well with those experimentally observed. D00 American Institute of Physics.
[S1070-663(100)00503-1

I. INTRODUCTION Significant experimental observations of splashing drop-
lets are summarized as the followin@) The instability is
A droplet with Iarge inertia frequently Spreads with fin- observed in the very ear|y stages of Spreaang;z) sp|ash_
gers extending from the edge when it impinges on a soligng occurs when the impacting droplet has significant kinetic
surface. Although the behavior of a spreading droplet aﬁeénergy as compared to surface energy and it is promoted by
colliding with a target Elane has peen the subject of intens%ugh target surfaces. A crown even develops under severe
study for many years;” comparatively less work has been destabilizing condition&° (3) increasing the impact inertia

done on a splashing droplet. Levin and Hdbbbserved the  jhcreases the number of fingéfsand this number slightly
formation of a crown, i.e., the detachment of a watershee&ecreases during spreadng.

from a tgrget surface, when a water drop impinges on a cop- A few articled®1113have addressed the origin of splash-
per hemisphere. Stow and Hadfl%tnhptographed the early g although no conclusive theory has been developed.
development of a watersheet emerging from the drop/targe|ienls syggested that a radially decelerating interface of a

contact area, and were able to distinguish splashing dr°ple§3reading droplet be Rayleigh—Taylor unstable and calcu-
from nonsplashing ones by the release of an unstablelt\)/vatelﬁted the wavelength of maximum instability based on the
sheet in the very early stages of spreading. Mugdal. average deceleration required to bring the spreading to a halt.
characterized the size and velocity of the secondary droplei§e mogeled the radially extending flow into one-directional

produced from a droplet coIIid_igg with a rotating disk at an ,2ne motion and assumed that the deceleration was due to
angle. Thoroddsen and Sakakibaraere the first to perform ;5045 damping. However, his model overlooks the effects

a systergaticl StL_de on the evoll(th.ion of thelfing?rs deviloping)f changing interface length during spreading and the effect
from a droplet interface spreading on a flat glass substratey o, atyre on the instabilities. In addition, the selection of

: 2
Furthermc_)re, recent expt_anmg’r?té showed Fh"’_‘t the un- he representative deceleration is somewhat arbitrary. Mundo
stable azimuthal undulation is a characteristic feature o t al10 suggested that the crown develops when the total

splashing. For this reason, we consider splashing to be thgnergy of a droplet prior to impact exceeds the amount of

unstable expansion of the spreading front in colliding drop-energy dissipated by viscosity during spreading. On the other

lets, including crown formation as an extreme case of splasl];'and Thoroddsen and Sakakibdreontended that the fin-
ing. In this work, we study a fundamental mechanism which '

: : o . o ering is due to the Rayleigh—Taylor instability of the decel-
mduc_eg, the |nstab|_||ty of the spreading front, proposing it asgrating fluid ring at the droplet bottom before the droplet
an origin of splashing.

collides with a target.
In Fig. 1, we show rather interesting photographs of a
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Science and Technology, Seoul 130-650, Korea. ; ; ; il
YAuthor to whom correspondence should be addressed. Present addre!s%:ss steel surface pOIIShed using a diamond paste. The pic

Department of Mechanical and Aerospace Engineering, University of Mis-tUr€ Of the.splat bottqnﬁFig. 1(b)] still exhibits thf—:‘ flow
souri, Columbia, Missouri 65211. Electronic mail: fengf@missouri.edu  pattern during spreading owing to the fast freezing of the

1070-6631/2000/12(3)/531/11/$17.00 531 © 2000 American Institute of Physics



532 Phys. Fluids, Vol. 12, No. 3, March 2000 Kim, Feng, and Chun

Taylor instability of the radially expanding sheet upon its
generation, in cylindrical geometry, as a fundamental mecha-
nism of splashing. Our study is similar to Allef’sin that
both investigate the Rayleigh—Taylor instability of the
spreading front. However, here we consider the changing
interface length and curvature and suggest a different mecha-
nism of liquid jet deceleration.

Although the Rayleigh—Taylor instability has been ex-
tensively studied for many years, most of the effort has been
focused on the plad&!®and spherical geometrié%:% In
particular, interests in cavitation bubbles, pulsations of un-
derwater explosion bubbles, and sonoluminescénbave
brought attention to the dynamics of spherical bubbles. The
behavior of a gas bubble, in an incompressible liquid under
adiabatic or isothermal conditions, is described by the
Rayleigh—PlessetRP) equatior??® The distortion ampli-
tude of the spherical interface is governed by an equation
whose coefficients are time-dependent as ruled by the RP
equation. When the amplitude of the radial oscillation is
small, the governing equations for the shape modes are re-
duced to Mathieu’s equation. On the other hand, Brenner
et al?’ examined both the Rayleigh—Taylor and the paramet-
ric instability mechanisms for a large amplitude case. In gen-
eral, numerical methods are required to analyze such a case.

In the present work, we investigate the instabilities of a
radially-expanding circular interface in cylindrical geom-
etries. It is emphasized that our interest lies in studying the
fundamental mechanism of the finger formation rather than
the finger evolution which was intensively investigated by
Thoroddsen and Sakakibaralt is for this reason that we
employ the potential theory in modeling the high speed flow
in the very early stages of droplet impact. We do not extend
our theory beyond the limit where the viscous effects be-

l | come important, in which stage fingers already generated

10 mm merely evolve. While the bubble dynamics are governed by

the RP equation, the motion of the liquid sheet upon its re-

FIG. 1. Splashed tin splata) Top of the splat(b) Bottom of the splat. The  lease is ruled by the dynamics of the very early stages of
impact conditions: impact velocity3.5 m/s, initial droplet diameter2.6 droplet spreading. We first obtain a general equation govern-

mm, droplet temperature at impac315 °C (freezing temperature of pure . . . . . .
tin=232 °Q, target temperature30 °C, and We=203. The size and veloc- ing the azimuthal instability of an expanding sheet by using

ity of the droplet were measured using a high speed video syétesak ~ domain perturbation methods and apply the results for the
Ektapro EM, Model 101R Droplet temperature was calculated using the very initial stages of droplet impact. The dynamic conditions

initial melt temperature and the flight distance. of a droplet prior to impact are represented by the Weber
number in our analysis. Numerical simulation is employed to
investigate the sensitivity of the instability analysis to the

molten metal droplet. It shows that fingers which developednodeling assumptions and the role of impact conditions.

at the splat edge in fact have their origins at the central area

of the splat. A closer look at the figure reveals that the ﬁn.'lh. DERIVATION OF THE AMPLITUDE EQUATION

gers have completely developed around the central area, wit

approximately half of the radius of the original droplet. It Consider a radially-expanding liquid jet whose expan-

follows that those fingers have already formed before theion rate, i.e., radial velocity as a function of time, is known

start to be frozen, or before the spreading front radiusa priori. The stability of the edge of the two-dimensional,

reaches one half the length of the original droplet’s radiusliquid jet subjected to an azimuthal disturbance is investi-

Consequently, this observation suggests that the formatiogated. Without disturbance, its shape is given only by time,

mechanism of the fingers can only be understood by studyingnd its velocity is determined merely by time and radial dis-

the behavior of the droplet right after the impact. The earlytance. However, under the azimuthal disturbance, the loca-

stage of droplet impact is characterized by a rapid release dion of the periphery is dependent upon an azimuthal angle,

a liquid jet>1**Therefore, we must study the early behavior 6, as well as time, as shown in Fig. 2.

of a liquid jet released upon impact to understand the mecha- We nondimensionalize the flow parameters based on the

nism of splashing. In this work, we propose the Rayleigh—characteristic radiuRy and the characteristic velocity*.
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dp IR 1 d¢ IR
— =t .
ar  dt r? a6 960 ®)

Using Eqgs.(3) and(4), we rewrite KBC as

J d dRyg IR 1 9d¢, dR
9o ﬂ=_0+_1+_2ﬂ_1. (9)
or or at ot r< do aeo

It is noted that KBC is imposed on a moving interfacer at

Atmospheric =Ry+ Ry, whose location is not knowa priori. Therefore,
gas the domain perturbation method is applied to find a boundary
condition which is to be imposed on an unperturbed inter-
FIG. 2. Disturbed liquid sheet which expands radially. face. From the Taylor series expansion, we obtain the fol-
lowing expressions which are correct to the first order:
(‘L"O) ~<‘9L’°) + (_‘72‘1’0 (10
In the case of liquid dropletsR§ andU* correspond to the o | _n.n a | _a Hoor? R ’
P . A . -0 1 -0 -0
original droplet radius before impact and to the impact ve-
locity, respectively. The characteristic time scatd,, is ddq dpq
given by 7* = RE/U*, and the velocity potential is scaled by o - “\ar . (1)
F=Rp*tRy r=

REU*. The following quantities are all nondimensionalized
based orRf, U*, 7*, andREU*, and Appendix A shows Hence, KBC to be imposed an=R(t), for the zeroth or-

their forms. der, is
The velocity potential of the liquidg, is defined such 9bo IR
that the radial velocityy,, and the azimuthal velocityy,, 770 _O, (12)
satisfy, respectively, ar - dt
I and KBC of the first order is, using E¢p),
e @ ip1 IRy M
o %: e+ Rimg. (13
and 0
196 In additipn, combining Eq47) and(12) gives the following
ve=s o (2)  expressions foM:

. . : _ M=RgRy, 14
It is supposed that the velocity potential and the outer radius oo (14

of the fluid R are slightly disturbed, so that they are ex- and
pressed as

M = 'RO.RO+ hoRo. (15)
b= ¢o(t,r)+ d1(L,1,0), ) The dynamic boundary conditiofDBC) on a free sur-
and face atr=Rp+R; is
R=Ry(t)+Ry(t,0), (4) i 1 . K
at 314l T we~APo 18

where ¢y and R, denote the axisymmetric spreading solu-

tions and¢, andR; are small perturbations. Due to the high where k denotes the curvature of the interface avd, the
Reynolds number associated with the high speed flow upopressure adjustment. The Weber number, We, is given by
impact, we employ the governing equation for a potentialWe=p* U*?RE/c*, p* and o* being the density and the

flow: surface tension of the liquid, respectively. Accurate up to the
first order, the curvature is expressed as
V2$=0. (5) :
. o _ _ 1 1 9°R,
We model the axisymmetric liquid expansion by a line K~ o= o2 Ri+—=|. (17
source at the center, giving the base flow solution as o R 70

6) Domain perturbation is again applied to the DBC to obtain a
condition for the unperturbed interface. The DBC to be im-
whereM is the strength of the source. Then the base solutioposed orr =R (t) for the first order is

of the radial velocity is expressed as )
s M M2 0y Mag 1 1 +(92R1 o
9¢o_M @ MRy RY) T At "R aor WeRZITY 0%

ar r’ (18

The kinematic boundary conditidiKBC) at the edge of As a solution of the Laplace equatiof, is expressed as
the expanding fluid is a superposition of normal modes:

do=M(t)Inr,
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[

b= 21 An(t)r™cosme, (19

where only sinusoidal perturbations are considered. Choos- |
ing a potential which corresponds to a disturbance decreas-
ing away from the interface in the inward directfBrelimi-

nates terms having™™ from the solution of the Laplace ;
equation. Consequently, the shape perturbation is given by

©

R,= >, fp(t)cosmé. (20) N\ | Va2
m=1 . ~ 4 -
Substitution of Eqs(19) and(20) into Eq. (13) yields Solid target P \Vl
Y 1
m-1_ o
MARy "=+ RS f- (21 @

After substituting Eqs(19) and (20), Eq. (18) becomes

M M2 (mP-1) 1| . ,

fn Rg R_8+ We R, +RIAL+MMRY “A,=0.
(22 I

Combining Egs(21) and(22), we finally obtain an equation
for the shape perturbation amplitude,: *

fotrat)f,+b(t)f,=0, (23
wherea andb are given as the following, by virtue of Egs.
(14) and(15): I

. |

R, Solid target
a(t)y=2—=, (249 <
Ro
$a
_(m+1) m(m-—1) o b
b(t)= = We +R0RO} (25) (b)

. . . . FIG. 3. Limiting cases of droplet spreading. The original droplet radius and
In a special case wheiR, is kept at unity throughout time, velocity are both unity after nondimensionalizatide) Volume V, is dis-
the frequency for thenth mode perturbationy,,, is given  placed toV, while the droplet descends with the speed of unity. The cylin-
by der radiust; is expressed as EQ7). (b) &, is the intersection radius of the
target surface and the droplet traveling with no deformation.

m(m2_1) 1/2
i ") 2
which is identical to Chandrasekhar's resiisee Appendix following simplified case. Suppose that the descending speed
B for details of a droplet upon impact is invariant from its original speed,

In short, Eq.(23) describes the development of an azi- Which is often observed in the early stages of spreadifg.
éAs shown in Fig. 8), we assume that the bottom of the

muthal perturbation on a cylindrical spreading sheet. Th . L .
coefficients are known if the spreading dynamics are known?’pherlcal droplet is displaced to the periphery of the droplet

We note that Eq(23) is a second order linear ordinary dif- spreading on the Surf_ace, resgltmg in the shape O,f a
ferential equation with variable coefficients. This equationtruncat.ed-sphere-on.-cyllnder. Using vo!umg conservation,
cannot be solved analytically, although stability of the soly-the radius of the cylinder, or contact radius, is calculated to
tion can be obtained for limit cases when the coefficients arg’e

periodic functions ot. [3 9, 1/81, 27, Lo 3 121172 ,
“7778% 2le® 2 TE 3 ) @)

wheres=1—t (0<t<1/3). Fort<1, & ~2t2 It is inter-

We begin to investigate the instability by obtaining the esting to note that if the droplet continues to travel after
base flow solutions. According to the Bowden and Fieldhitting the surface as if the surface did not eXiste Fig.
model® we expect an immediate generation of a liquid jet on3(b)], the radius of the intersecting area is expressed,as
impact when the Mach number, MaJ*/c*, U* being the = (2t—t?)'2, which is approximated to b&,~ (2t)Y/? for t
impact velocity andc* the sound speed in the liqguid me- <1. Supposing that the expanding liquid jet exhibits the
dium, is very small. To obtain the base flow solution, i.e., thesame tendency ass modeled above upon its generation, we
expansion rate of the liquid jet or contact area, consider thevrite

IIIl. NUMERICAL SIMULATION RESULTS
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2 T - ' - - ' neart=1/3. The timet=1/3 corresponds, for example, to

| 500 us for a droplet with a radius of 3 mm and an impact
A=3 velocity of 2 m/s. Consequently, it is very difficult to mea-
sure the “temporal evolution” of the contact area radius dur-
ing the very short period from the moment of impact. Most
experiment§31-3° reported to date present at most 2 data
1A=2 points in the time span of our interest. Other experimental
result§®® presenting at least 3 points in that time range,
appear to agree with the time dependence modeled by the
1A=2'"2 theoretical considerations above.

In the context of the Rayleigh—Taylor instability, when
the expanding liquid decelerates with respect to a lighter at-
mospheric gas, the liquid tends to be destabilized while the
surface tension has a stabilizing effect. It is possible to ap-
proximately predict stability by observing the behavior of the

Radius

% o005 01 045 02z 025 03 coefficientsa andb or by canonical transformatiofsee Ap-
Time pendix Q. However, because of the time-dependent coeffi-
(a) cients of EQ.(23), only numerical simulation can exactly
10° ' ‘ ' . ' . predict the wave number of maximum instability and the rate

of growth for the shape perturbation. Based on the base so-
lutions, we numerically solve Eg23) under given initial

" ] conditions such af,,=1 and f,,=0, and f,,=0 and f,,

=1. The modified Euler method has been employed to solve
the initial value probleni®

10°| ) Factors which determine the magnitude of deceleration
of a liquid interface, i.e., the driving mechanism of the
Rayleigh—Taylor instability, include the coefficieAdtand the
initiation time of perturbation. According to the asymptotic

Deceleration

)
T

" theories?® when a perfectly spherical droplet hits the target
plane,A is calculated to be % in the present nondimension-
10"} ] alization, which lies between our limiting caseséfandé, .
A=3 In reality, A is supposed to be dependent upon droplet impact
’,if%wz conditions as well as the surface curvature of the impacting
10° s . : . : - droplet. Mathematical singularity occurs s 0 when both

0 0.05 0.1 0.15 0.2 0.25 0.3

Time the velocity and the deceleration of the sheet reach infinity.

(b) The sheet emerges from a finite initial radius which corre-

sponds to a finite nonzero initiation time. Since it is not clear
FIG. 4. (a) Transient radius profiles of an expanding liquid sheet expressed/€t When the liquid sheet emerges, we examine the sensitiv-
asR,=At2 (b) Corresponding deceleration. Note that the significant de-ity of the perturbation analysis to the perturbation onset time
celeration is experienced by the interface immediately after impact, Whictr In the meantime. the effects of impact inertia and surface

drives the Rayleigh—Taylor instability. b ! )

tension are manifested through the Weber number in our
analysis. The presence of surface tension, which stabilizes

" the interface, leads to the mode of maximum instability. In

Ro=At", (28)  the following we present the numerical simulation results,

where the coefficienf is dependent upon the impact condi- including the roles of such parameters as described above.
tions of the droplet. Figure 4 shows the radius and decelera- Figure 5 shows the temporal evolution of shape pertur-
tion profiles for the expanding liquid sheet depending on théations for different wave numbers. For a computation time
value ofA. range, we use the limit to which Ed27) holds, i.e.,t
Asymptotic theories of Korobkin and Pukhnachdand = 1/3. Perturbations of different wave numbers compete with
a simplified analysis of Oguz and Prosper8ttlso yield the one another and the mode number of maximum instability
same time dependence as our limit analysis, providing a thesaries with time, unlike time-independent coefficient sys-
oretical justification of our model. On the other hand, experi-tems. In addition, neither the growth rate of the perturbation
mental data on the initial stages of droplet impact are hard toor the cutoff wave number is easily defined. As predicted in
find, due to the limitations in the experimental techniquesAppendix C, the perturbations of high wave numbers are
We recall that the fingers shown in Fig. 1 have already destabilized ad increases although the instants when the am-
veloped when the contact area reaches only a half radius @flitudes alter their slopes do not exactly coincide with those
the original droplet. In many experimerité23!the radius of ~at which theb’s change sign. In Fig. 5, the perturbation
the contact area reaches more than that of the original dropleimplitude ofm=56 even decays to a value less than the
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FIG. 5. (a) Temporal evolution of the shape amplitudes of various wave g, 6. (a) Perturbation amplitude versus wave numbers for different time.
numbers untit=0.1. (b) Temporal evolution of the shape amplitudes until .. . o B . N .
Initial conditions for solid lines aré,,=1 andf,=0. Initial conditions for

t=1/3. Initial conditions at=t; aref,,= 1 andf,,=0. The computation was ) p )
C ol ¢ _ . - a dotted line ard ,=0 andf,,,=100. The computation was performed for
performed forRy=2t"<, t;=0.01, and We=500. Perturbations om=40 Ry=2t"2 t,=0.01, and We-500. (b) Changes of a mode number of maxi-

anijSFE)O Saée exdcese6d(ejd by tr;tat mf=36 _dlljlrmg sp_readmg. dPerturbatlons of mum instability and a pseudo-cutoff wave number with time. Computation
m=>59, 55, an ecay after an initially growing period. conditions are those of the solid lines (a).

initially assigned one beforereaches 1/3. We define such a and which wave number manifests itself in the competition
wave number that is less than the so-found wave number bgf many modes during spreading. Such questions can be an-
one, as a pseudo-cutoff wave number. In this case, it is 55wered by considering the nonlinear effects of finite ampli-
Note that our definition of the pseudo-cutoff wave number istude perturbations, which are beyond the scope of the present
different from the criteria used in Appendix C, which are work. Nonetheless, according to our linear theory, high wave
used to judge whether the perturbation amplitudes will gronnumbers excited in the earlier stages of impact are over-
unboundedly. whelmed by lower wave numbers in the course of spreading,
Figure Ga) shows that there exists a wave number whichas deceleration decreases. Figure 7 shows the development
maximizes the amplitude perturbation at every moment duref azimuthal disturbances at the modes of maximum insta-
ing spreading. Furthermore, the number tends to slightly debility based on the simulation results. A droplet with a higher
crease during spreadiférig. 6b)], which appears to coin- Weber numbefWe=500, Fig. 71b)] develops a much more
cide with an experimentally observed reduction in theunstable spreading front than one with a lower Weber num-
number of fingers at the spreading edyélore studies are ber[We=50, Fig. 7a)].
required to understand how fingers merge during spreading Effects of the coefficienf, or the expansion rate of the
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FIG. 8. Effect of the coefficienA on instability. The computation was
performed fort;=0.01 and We=500. (a) Wave number of maximum insta-
bility versusA. (b) Perturbation amplitude of those numbers verdus

FIG. 7. Growth of azimuthal disturbances during spreading. at the modes Ot‘esults of the wave number of maximum instability are rather
maximum_ instability. Initial conditions aré,=1x10"* and f,,=0. T_he insensitive tot; . Figure 10 presents the role of the Weber
computation was performed f&,= 2t*2 andt;=0.01.(a) Shape evolutions I o .
when We=50. From the innermost corrugated circlies 0.06(m=15), _number on the instability. As the V\_/ebe_r number increases,
0.12(m=14), 0.24(=12), 1/3=12). (b) Shape evolutions when We i.€., When the effect of surface tension is weakened and that
=500. From the innermost corrugated circles0.06(m=47), 0.12(n  of inertia is strengthened, a greater number of high modes
=42), 0.24(=238), 1/3(=36). are excited and perturbation amplitudes increase, as previ-
ously illustrated by Fig. 7. This is consistent with the Mar-
manis and Thoroddséh observation that higher impact
liquid sheet, on instability are shown in Fig. 8. We note thatspeed results in a greater number of fingers.
when the sheet radius is given by Eg8), a high expansion We compare our numerical results with available experi-
rate due to large results in a high magnitude of decelera- mental data. Thoroddsen and Sakakibacaunted the num-
tion, which eventually promotes the instability of higher ber of fingers of a spreading droplet with WB10 in the
wave numbers. Figure 9 illustrates the effect of perturbatiompresent definition of the Weber number, and its spreading
onset time on instability. Perturbations initiated earlier ex-diameter versus time was measured as well. According to the
hibit larger deceleration, thus promoting instability of higher spreading diameter measurement, the valueAdfor the
wave numbers. However, it is noteworthy that the analysigiroplet is approximately 2.2 based on the fact that the first
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FIG. 9. Effect of the perturbation onset tinheon instability. The compu-  FIG. 10. Effect of We on instability. The computation was performed for
tation was performed foRy=2tY? and We=500. (8) Wave number of R,=2t"2 andt;=0.01. (a Wave number of maximum instability versus
maximum instability versug . (b) Perturbation amplitude of those numbers We. (b) Perturbation amplitude of those numbers versus We.

versust; .

33 fingers. We seA=2.2, based on the available spreading
data point of their measurement is locatedRgt=2 whent  radjus measurement in the very early stages of droplet im-
~0.8, in the present nondimensionalization. As discussegact with a somewhat similar Weber number—3@ow
earlier,A depends on the surface curvature of the impactingng Hadfield Fig. 15. Our numerical simulation predicts
droplet which was not maintained as perfectly spherical duriyat the wave number of maximum instabilitytat 0.1 is 40

ing the experiments. Our simulation predicts that the waveyith t;=5x10*, and 32 witht;=0.01, which agrees well
number of maximum instability for the condition is 63 at the yith the experimental measurement.

nondimensionalized time=0.1 with t;=5Xx10"%. It is re-
called that our analysis results are not very sensitivg to
e.g., the wave number of maximum instability is 50tat
=0.1 with t;=0.01. Assuming that the number of fingers We developed a linear perturbation theory of interface
initially generated does not change significantly duringinstabilities of a radially-expanding, liquid sheet in cylindri-
spreading, as supported by Fig. 1 and Thoroddsen anchl geometries. The theory was applied to an expanding jet
Sakakibara! the predicted wave numbers are in good agreeunder a spreading droplet as a proposed mechanism of
ment with their measured valu€sig. 14 of Thoroddsen and splashing. Our analysis was restricted to the very early stages
Sakakibard). In addition, we compare our simulation re- of droplet impact, i.e.{<1/3. It is because we are interested
sults with the splat shown in Fig. 1, which has approximatelyin studying the fundamental mechanism of the finger forma-

IV. CONCLUSIONS
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tion rather than the finger evolution. Based on a theoretical AxRE (M- fx M*
model on the contact area expansion in the very early stages Am:U—*’ fm:R_*’ M= REUT
. N ) o 5 5

of droplet impact, significant deceleration upon the collision

triggered the Rayleigh—Taylor instability. The perturbation r* R* R¥

theory was able to predict the most rapidly growing mode of I Ri:R_*

azimuthal disturbance and its growth rate at each instant dur- P

ing spreading. The mode number of maximum instability v vh *

changed because of time-dependent coefficients in the ampli- ?r VLR Vo= gxe t=—,

tude equation. We examined the effects of several param-

eters on the analysis results, including the transient profile of AP§ d*

an interface radius, i.e., the coefficieAt the perturbation APFW* ¢:W’

onset timet;, and the Weber number. Experimentally ob- °

served number of fingers at the spreading fronts were com- :

pared with our predictions, and they agreed well. ¢i=w
It is noted that the parameters examined abadvet;,

and We, may be interrelated with one another in reality: the «=«*R{.

impact conditions including the droplet size, velocity, and

the surface curvature, not only affect the Weber number, buAPPENDIX B: THE OSCILLATION FREQUENCY OF

they also determine the collapsing dynamics of the droplePERTURBATIONS TO A CONSTANT RADIUS

and its sheet expansion characteristi&sindt; . In addition,  LIQUID SHEET

it is known that substrate roughness plays a significant role In Chandrasekha® the frequency for thenth mode azi-

in splashing: The roughness may affect the valuestoéind muthal perturbation on a columnar liquid jet, is given b
t;, change the mode of the maximum instability, and desta- P quid ok Is 9 y:

bilize the perturbation for a given wave number. Moreover,m the present nondimensionalization,
as the spreading progresses beyond the very initial stages, ) 1 xIL(x) .
the azimuthal perturbation grows and nonlinear interactions wmzm I(X) (M*+x°—1), (B1)
between modes such as those reported by Thoroddsen and
Sakakibar take place. Although it is possible to extend our Wherex=KkRy, k denoting the wave number in the length-
analysis to include weakly nonlinear terms, such an efforWise direction, and,, is the modified Bessel function of the
must be combined with including the viscosity in the analy-first kind, of orderm. We show that for a two-dimensional
sis since soon after the initial stage, the viscous terms can riiuid sheet whose unperturbed radigg is kept unity, Eq.
longer be ignored. To develop an understanding of these togB1) is reduced to Eq(26). Using the following identities?
ics, future studies are required. m

In conclusion, we propose the Rayleigh—Taylor instabil- 1 /,(k) =1+ 1(k)+ X [ m(k), (B2
ity as a mechanism to destabilize the rapidly expanding lig-
uid jet, released upon droplet collision with a solid target. " (k[2)AFm
Numerical simulations of the temporal evolution of shape  Im(k)=2, +———— (B3)

(i=0,1,

*

(i=0,7),

. : : ) jr(+mt’
perturbations are able to determine the most rapidly growing =0 4 )
wave number and the growth rate of perturbation amplitudeswe find
Our analysis reveals that larger impact inertia associated with kI’ (K)

m

a higher We, and thus presumably a highepromotes in- lim———~ —
terface instability, and prefers a higher wave number for  k—o I m(K)
maximum instapility. W? relate th?s instapility t_o the f.unda- Therefore, in the limik— 0, Eq.(B1) is identical to Eq(26).
mental mechanism behind splashing, or fingering, of impact-
ing droplets which is initiated in the very early stages of
impact.

(B4)

APPENDIX C: PREDICTIONS OF THE SHAPE

STABILITIES
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. ) manner as the following. First, we approximate the stability
port of this work under Grant No. DMI-9634931. by observing the behavior of the coefficieatandb. Figure

11 showsa andb as functions of time, based on E8). In
general, positivea, as shown in Fig. 1), corresponds to
The following gives the definitions of the nondimen- the positive energy dissipation, thus it has a stabilizing ef-
sional quantities used above. Note that all the asteriskefkct. The coefficientb, the restoring term, is negative at
symbols denote dimensional quantities, whereas nonastesmall t for all wave numbers shown in Fig. (), thus it
isked symbols are the corresponding nondimensional quantdestabilizes the interface. For high wave numbbrsyentu-
ties: ally becomes positive during spreading due to the surface

APPENDIX A: NONDIMENSIONAL QUANTITIES
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tension, thus it stabilizes the high mode perturbations. The

value ofm under whichb remains negative, denoted g,
is calculated to be

A3 We 1/2
) (CY

Next, we predict the stability by employing the follow-

ing canonical transformation:

Fmn()=g(t)fm(t), (C2
where the functiorg(t) is given by

g(t)zexp{;f a(t)dt|. (C3
We then obtain the transformed equation Fgg(t) as

Ert Bu()Fmn=0, (4
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FIG. 12. (a) The wave numbers; andm, versus time. The wave numbers
of maximum instability(circles are from Fig. 6(b) Normalized differences
of m; andm, versus time at different Weber numbers.

where
Bm(t)=b— 32— ;a2 (C5)

The quantityB,(t) determines whethdf,(t) is oscillatory
or nonoscillatory. Sincef,,=g~'F,, and a(t) is positive
[Fig. 11(a)], the mode that will grow unboundedly is neces-
sarily a mode for whichB,(t)<0. The value ofm, under
which B,(t) remains negative, denoted @5, is calculated
to be

A3 We 1/2
= e+l

my= 41172

(C6)

Figure 1Za) showsm; and m, versus time during ex-
pansion of the liquid sheet wheh=2 and We=500. The
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