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Sliding of Liquid Drops Down an Inclined Solid Surface
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A liquid drop that partially wets a solid surface will slide down the
plane when it is tilted beyond a critical inclination. Here we report
the study of the sliding velocity of such a drop. Experiments for
measuring the steady sliding velocity of different liquids of drops are
performed. We then construct a scaling law that predicts the sliding
velocity given the physical properties, wetting characteristics, and
size of the drop. When the sliding velocity is low and the drop
distortion due to inclination is small, the scaling law is shown to
correctly model the functional dependency of the measured sliding
velocity. C© 2002 Elsevier Science (USA)
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1. INTRODUCTION

When a liquid drop is placed on a tilted solid plane, the drop
tends to move down the incline. A drop on a superhydrophobic
surface will roll down the plane (1, 2) but a drop that partially
wets the surface will seemingly slide along the surface. At a small
inclination angle, however, the drops stick to a solid surface.
From a continuum point of view, the mechanism responsible
for this drop adhesion is described in terms of the contact angle
hysteresis, i.e., the difference between the advancing contact
angle and the receding contact angle. The onset of the contact
line’s motion, i.e., the transition from its pinned state to a moving
state, is regarded as a dynamic critical phenomenon that occurs
when the energy barrier due to a defect is overcome (3, 4).

Here we consider the motion, beyond the critical state, of
a partially wetting viscous drop under the gravitational field.
Despite its frequent appearance in natural processes such as
a raindrop hitting a windowpane and in engineering applica-
tions including condensing vapor on a cold tube surface, the
problem of a sliding drop has attracted only a limited attention
to date (5–8). In this problem, the classical no-slip boundary
condition leads to a divergence in the shear stress and the en-
ergy dissipation at the contact line where the three phases of
solid/liquid/gas meet (9). Another famous droplet motion in-
volving the contact line movement is the spreading of drops on
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a horizontal surface. Although the spreading problem also suf-
fers from the contact line singularity, relatively plentiful studies
have been reported (10–18) for this problem, and this is partially
attributed to the fact that the problem is essentially axisymmet-
ric, thus two-dimensional. Moreover, Refs. (19–21) assume that
the spreading drop approximates a cylindrical disk to obtain a
closed-form expression for the spreading velocity and the dy-
namic contact angle, which was hardly possible by those gen-
eral two-dimensional models. On the other hand, a sliding drop
down an incline tends to distort from its sessile configuration,
and describing this three-dimensional drop shape, let alone its
movement, requires a considerable effort (22). This aggravates
the difficulty of the sliding drop problem together with the con-
tact line singularity.

At the moving contact line, one needs to set up such boundary
conditions that determine the behavior of the contact angle and
remove the shear-stress singularity (23). Here we briefly review
the boundary conditions set up in the previous models for the
“sliding” drop. Hocking (5) examined the sliding drop assum-
ing a thin two-dimensional configuration. At the contact line,
the advancing and receding contact angles were fixed at small
values. To relieve the singularity, his analysis used a Navier slip
model (24) that the slip velocity is linearly proportional to the
local velocity gradient, or the shear stress, at the drop bottom
in contact with a solid surface. Dussan V. and Chow (6) and
Dussan V. (7) obtained asymptotic solutions for a steady move-
ment of a drop in the limit of both the Reynolds number and the
capillary number approaching zero. Hence, these studies ob-
tained the contact line motion as a perturbation to a quasi-static
solution. At the contact line, a linear variation of the dynamic
contact angles with the speed of the contact line was assumed.
The models do not suffer from the shear-stress singularity since
they were limited to the case as the capillary number app-
roaches zero. Durbin (8) also analyzed the sliding of a thin
two-dimensional drop assuming fixed advancing and receding
contact angles. In the model, the velocity slip was assumed in a
so-called yield stress region near the contact line, where the shear
stress was held constant at the interface’s yield stress. Let alone
the validity of those models, these studies are concerned only
with limited configurations, e.g., small thin drops that enable
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the lubrication approximation; hence general understanding on
this problem, including partially wetting drops, is still far from
complete.

In this work, we perform experiments to measure the steady
velocity of partially wetting viscous drops down an inclined
solid surface. The measurement data for the sliding velocity of
partially wetting drops appear rare, although the rolling velo-
city of a drop on a superhydrophobic surface has been reported
(2). Furthermore, an approximate model for predicting the func-
tional dependency of the sliding velocity on various parameters
is constructed. To this end, we employ the theory of de Gennes
(3) and de Ruijter et al. (21) to evaluate the dissipation during the
drop motion. In addition, we approximate the shape of a sliding
drop, in a similar spirit to Refs. (19–21) for a spreading drop, to
obtain the closed-form expression of the sliding velocity.

2. EXPERIMENTS

2.1. Dependency of the Sliding Velocity

We consider a drop whose center of mass moves with a steady
velocity U down a plane inclined at an angle α with the horizon-
tal as shown in Fig. 1. It is first necessary to determine which
parameters affect the drop sliding velocity in order to achieve
meaningful experimental measurements. To this end, we per-
form dimensional analysis (25) to obtain the functional depen-
dency of similarity variables relevant to our system. The drop has
the density ρ, the surface tension σ , and the viscosity µ, with its
radius R0 when in a spherical shape. We assume that U is depen-
dent upon R0, σ , µ, the gravitational force per volume, ρg sin α

with g being the gravitational acceleration, and interfacial pa-
rameters. Here we let the interfacial parameters include the mi-
croscopic length scale, λ, which relieves the classical no-slip
boundary condition at the contact line, and the static and dynamic
contact angles. It is noted that different theories on the contact
line dynamics may choose different sets of interfacial parame-
ters. For example, the dynamic contact angles may be replaced
by the proportional constants between the contact line speed and
the difference of the dynamic and static contact angles (5, 6, 26).
See Section 9 of (23) for more discussions on various theories of
contact line dynamics. In addition, it is noted that we choose R0

as a single length parameter under the assumption that the es-
sential information on the drop geometry can be deduced based
on R0 and the interfacial parameters such as contact angles.

FIG. 1. Shape of a drop sliding down a surface inclined at α with the

horizontal, having the advancing contact angle θA and the receding contact
angle θR.
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TABLE 1
Physical Properties of the Liquids Used in the Experiments

Density Viscosity Surface tension κ−1 θe

Liquid (kg/m3) (Pa · s) (N/m) (mm) (◦)

EG 1114 0.0209 0.0484 2.1 70.2
GW 1228 0.0600 0.0641 2.3 73.6
Glycerin 1260 0.95 0.063 2.3 78.1

Dimensional analysis reveals that the dimensionless velocity,
i.e., the capillary number Ca = µU/σ is expressed as

Ca = f (BoT, �i ), [1]

where BoT is the Bond number tangential to the inclined surface,
BoT = ρgR2

0 sin α/σ , and �i denotes the dimensionless inter-
facial parameters which include, under our current assumption,
λ/R0, the equilibrium contact angle θe, the advancing contact
angle θA, and the receding contact angle θR. In our experiments,
we use different drop liquids to vary the fluid-dynamic and inter-
facial properties. In addition, various volumes of drops are tested
to investigate the effects of the drop size, and the inclination is
changed to vary the gravitational force component.

2.2. Description of the Experimental Apparatus

The liquids used in the present study are ethylene glycol
(EG: above 99.5%), glycerin (80 wt%)–water (20 wt%) mixture
(GW), and glycerin (above 98.5%). The physical properties of
the liquids are shown in Table 1 with their capillary lengths κ−1.
The drops are placed on solid surfaces using a pipette (Gilson
Pipetman P1000). Polycarbonate is used as a solid surface, and
its root-mean-square (RMS) surface roughness is measured to
be 1.3 nm with 4.8% of standard deviation (27). To deduce the
mass of a liquid drop, the weight of the solid substrate before and
after placing a drop on it is measured using an electronic ana-
lytical balance (Mettler-Toledo AB204-S). The solid substrate
is then placed on a plane, which can be tilted by rotating a handle
as shown in Fig. 2. A ruler is attached to the apparatus to deduce
the tilt angle of the plane.
FIG. 2. A schematic of the experimental setup.
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The equilibrium contact angles are measured using the same
method as employed in (28), and the values are listed in Table 1.
We then measure a critical angle of inclination at which a drop,
strictly speaking, a trailing edge of the drop, starts to move. To
observe the trailing edge from the side, a high-magnification
zoom lens (Moritex ML-Z07545) is attached to a CCD camera
(Pulnix TM-200). The ruler on the experimental apparatus is
read at the moment the trailing edge starts to move while slowly
rotating the handle. The critical inclinations for various volumes
of drops of each liquid are measured.

In experiments to investigate the motion of a drop, the plane
is tilted to an angle greater than the critical inclination, and then
stopped. After the drop moves a distance greater than twice its
base diameter, the plane is tilted further to observe the drop mo-
tion at an increased tilt angle. The same procedure is repeated
until the drop moves out of the field-of-view of the CCD cam-
eras. Two CCD cameras are used to obtain both the top and side
views, and they are fixed to the tilting plane to get stationary
fields-of-view while the plane is inclined. S-VHS video cassette
recorders (Philips VR999/61) are connected to the cameras to
record the images. Each camera is equipped with a magnifying
lens (Computer MLH-10X). During experiments, both images
are displayed on monitors (Sony PVM-14N5E). After experi-
ments, images are digitized by a frame grabber (Eurecard Picolo
Pro2) and analyzed using an image analysis software. Figure 3
shows a typical image of a sliding drop observed in the experi-
ments. The volumes of drops are varied in the range of about 15
to 85 mm3; i.e., R0 varies between 1.5 and 2.7 mm.

From the side-view images, we measure the length and the
height of the drop and the speeds of both advancing and receding
edges of the drop. The width of the drop is measured from the
top-view images. A ruler recorded by the same video setup is
used for calibration. Figure 4 shows the typical measurement
data for the drop’s traveling distance versus time, which indicates
that the drop moves steadily during experiment.

2.3. Experimental Results

As discussed above, the sliding velocity depends on various
parameters and even dimensional analysis reveals multiple di-
mensionless variables on which the dimensionless velocity de-
pends. It is the objective of this work that we experimentally
investigate the dependency of the velocity on those various pa-
rameters and that we construct a scaling law to explain the ob-
served phenomena. In this section, we first present the selected
measurement data obtained for various experimental conditions
FIG. 3. Image of an EG drop on a sold surface tilted close to its critical
inclination. The drop volume is 13.4 mm3 and the inclination is 12◦.
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FIG. 4. Measurement results of a typical traveling distance of a glycerin
drop versus time. Circles and squares denote the advancing and receding contact
lines, respectively. For the case shown here, the drop volume is 77.8 mm3 and
the inclination angle is 20◦.

in Table 2. A complete set of experimental data will be used in the
plots drawn later when the scaling law is employed to organize
them. A theoretical development to elucidate the mechanism
that governs the steady sliding of viscous drops follows below.

TABLE 2
Selected Experiment Conditions and Measurement Results

for the Steady Sliding Velocity

Liquid Volume (mm3) α (◦) U (mm/s)

EG 15.1 14 0.229
15 0.352
20 0.649
25 1.234
30 1.724
36.5 1.799

29.2 9.5 0.158
11 0.375
14 0.643
15 0.951
18 1.187
20 1.557

GW 24.0 20 0.122
21.5 0.184
22.5 0.275
25 0.399
28 0.490
30 0.667

Glycerin 77.8 14 0.041
15 0.065
18 0.070
20 0.092
28 0.132
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3. ANALYSIS OF SLIDING VELOCITY

3.1. Energy Balance

We construct a scaling law for the steady velocity of a slid-
ing drop based on the energy balance. The motion is driven by
the gravitational field and we write the rate of decrease of the
gravitational potential energy, �g, as

�g = ρV gU sin α, [2]

where V is the volume of the drop. To enable the steady motion
of a drop, the gravitational energy decrease should be dissipated
during its motion. Following de Gennes (3), the total dissipation
function �t can be written as

�t = �v + �l + �f, [3]

where �v denotes the viscous dissipation due to the velocity field
in the continuum domain and is detailed in next subsection. �l

is the dissipation in the vicinity of the contact line associated
with the motion of fluid molecules between adsorption sites
distributed on the solid surface (21, 29). The dissipation in the
precursor film,�f, is neglected since we are dealing with a partial
wetting regime where the appearance of the precursor film is not
probable (21).

In the vicinity of the contact line, its movement can be viewed
as the motion of fluid molecules to the neighboring adsorption
sites on a solid (21, 29). The dissipation associated with this
microscopic process is denoted by �l, and it is the sum of the
dissipation at the advancing edge �l,A and that at the receding
edge �l,R, i.e., �l = �l,A + �l,R. First we consider the dissipa-
tion at the advancing contact line which is given by

�l,A =
∫
LA

qUn dl, [4]

where LA is the length of the advancing contact line and Un

is the velocity component normal to the contact line written as
Un = U cos β, where β is the azimuthal angle measured from
the foremost advancing front of the drop. In addition, q is the
work done by the force causing the contact line to move per
unit displacement of unit length. References (29, 30) suggest
that the jumping of fluid molecules between the adsorption sites
is caused by the out-of-balance surface tension acting on the
contact line; thus we write q = σ (cos θe − cos θA). When the
same mechanism is applied to the receding contact line and
assuming that the advancing and receding edges are of the similar
shape, �l is given by

�l = σU
∫ 2π

0
x cos β(cos θR − cos θA) dβ. [5]
In general, x , θR, and θA are functions of the azimuthal angleβ.
Moreover, θR and θA are known to be dependent on the velocity
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U . However, it is reported that for low Ca, Ca 	 10−2, the
variation of the dynamic contact angle from its critical value at
the onset of the motion is small (31, 32). As shown in the previous
section, our experimental results fall in this low Ca regime, and
the investigation of the drop images confirmed an insignificant
change of the dynamic contact angles. Thus we assume that the
dynamic contact angles at the critical inclination can be used to
evaluate �l with a sufficient accuracy for the present purpose of
scaling analysis. Now it is noted that at the critical inclination
αc, the gravitational force parallel to the incline, ρVg sin αc, is
balanced with the capillary force Fc (6, 33):

Fc =
∫ 2π

0
x cos β(cos θR − cos θA) dβ. [6]

Therefore, �l is written as, based on Eqs. [5] and [6],

�l = ρV gU sin αc. [7]

A further simplification, though approximate, of Eq. [6] is
possible based on Ref. (22)’s computation result that the ad-
vancing (receding) contact angle of an inclined drop is constant
for a wide range in the advancing (receding) edge, exhibiting an
acute jump of the angle where the advancing and receding edges
meet. In addition, when the drop/solid contact area is close to a
circle, we get

Fc ≈ σw(cos θR − cos θA), [8]

where w is the width, or diameter, of the contact area. In this
case,

�l ≈ σwU (cos θR − cos θA). [9]

It is interesting to note that the dissipation process near the
contact line is directly related to the contact angle hysteresis.
We find that this is consistent with the viewpoint of (34) that
the contact angle hysteresis is associated with the liquid–solid
adhesion.

3.2. Viscous Dissipation

The viscous dissipation is determined by the velocity field in
the drop. When the drop is large, it consists of a flat central part
mainly governed by gravity and an edge where the capillarity
takes effect (35). In this case, the velocity field in the flat part
may be assumed to obey the lubrication approximation, whereas
the velocity field in the edge must be described using the Stokes
equation unless the contact angle is very small (5). On the other
hand, a small drop, whose characteristic size (e.g., the radius
of its spherical form, R0) is smaller than the capillary number,
κ−1 = (σ/ρg)1/2, takes a spherical-cap shape on a horizontal
solid surface. Provided that the drop deformation due to tilting

of the solid surface is small and that the drop partially wets
the solid surface, the entire flow field in the drop would follow
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FIG. 5. The coordinate system and the flow field in a wedge near the contact
line.

the Stokes equation. A criterion to determine a drop size below
which the dissipation by the Stokes flow dominates is derived
below.

We first compute the viscous dissipation by the Stokes flow
in the wedge. This geometry models not only the edge of a
large drop but also the entire volume of a small drop. Huh and
Scriven (9) calculated the velocity field of a two-dimensional
wedge satisfying the Stokes equation using the plane polar co-
ordinates as shown in Fig. 5. The viscous dissipation per unit
volume, f , in the plane polar coordinates is written as

f = 2µ

[(
∂vr

∂r

)2

+
(

1

r

∂vθ

∂θ
+ vr

r

)2

+ 1

2

(
1

r

∂vr

∂θ
+ ∂vθ

∂r
− vθ

r

)2
]

, [10]

where vr and vθ denote the radial and azimuthal velocities,
respectively. Using the velocity field obtained by Huh and
Scriven (9), it can be shown that f is given by

f = 4µ
U 2

r2
(a cos ϕ − b sin ϕ)2, [11]

where a = sin2 θ/(θ − sin θ cos θ ) and b = sin θ cos θ/(θ −
sin θ cos θ ), θ being the contact angle. The dissipation in the
liquid wedge per unit depth, �′

w, is then calculated as

�′
w =

∫ �

λ

∫ θ

0
fr dr dϕ, [12]

where � is the length scale up to which the wedge flow ap-
proximation holds. A cutoff length λ is introduced to prevent a
blowup of the dissipation (3, 35). In other words, the classical
hydrodynamic theory ceases to hold in a region near the contact
line whose size is represented by λ. A discussion on its magni-
tude is given later in this article, but it is known to range in a

microscopic scale.
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Substituting Eq. [11] into Eq. [12] yields

�′
w = 4µU 2c(θ ) ln

(
�

λ

)
, [13]

where c(θ ) is a function of the contact angle as plotted in Fig. 6.
When θ is very small, the dissipation is quite severe. As θ ap-
proaches 180◦, c(θ ) vanishes, and so does the wedge dissipation.
This case corresponds to a rolling of a small drop in which there
is no singularity in either the force or the stress at the con-
tact line (1). However, when θ falls in a moderate range, i.e.,
0 	 θ 	 180◦, c(θ ) can be approximated to a linearly decreas-
ing function within a sufficiently narrow angle range with its
order remaining as unity. The partially wetting drop, which is of
our interest here, belongs to this moderate contact angle range.
Therefore, integrating �′

w over the drop perimeter, the wedge
dissipation, �w, is scaled as

�w ∼ c(θ )µU 2L ln

(
�

λ

)
, [14]

where ∼ means “on the order of” and L is the peripheral length
of the drop/solid contact area. Here we have assumed that the
viscous dissipation in the wedge can be estimated via a two-
dimensional approximation. In addition, θe can be used for a
representative contact angle θ either when dynamic contact an-
gles do not deviate severely from the equilibrium contact angle
or when the arithmetic mean of the advancing and receding con-
tact angles is close to θe (5), recalling the locally near-linear
behavior of c(θ ).

The viscous dissipation obtained above accounts for the dis-
sipation arising in the entire volume of a small drop. However, a
FIG. 6. c versus θ .
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large drop experiences the dissipation by a lubrication flow in its
central part as well as the dissipation in its edge. The dissipation
due to a bulk motion in the central part is denoted by �b, and is
scaled as

�b ∼ µ

∫
Vb

(∇v̄)2 dV, [15]

where Vb is the volume of the central part and v̄ the velocity
field in the drop. The velocity gradient of the bulk motion in the
drop is scaled as |∇v̄| ∼ U/h, where h is the height of the drop.
Therefore, the order of magnitude of �b is estimated as

�b ∼ µVb(U/h)2. [16]

For a drop much larger than the capillary length, the height of
the drop is given by (35)

h0 = [2(7 − cos θ )]1/2κ−1. [17]

Now we compare the magnitudes of the wedge dissipation
and the bulk dissipation for a large drop. If the contact area of
a drop with a solid surface, or drop base area, is denoted by Ab,
both V and Vb can be scaled as Abh. In addition, if the drop base
area is kept nearly circular despite the tilting of the plane, we
write L ∼ 2π Rb and Ab ∼ π R2

b, Rb being the radius of the drop
base area. Therefore, using Eqs. [14] and [16], the ratio �b/�w

for a large drop is given by

�b

�w
∼ Rb

2hc(θ ) ln(�/λ)
. [18]

If we scale the drop volume V as V ∼ π R2
bh, Eq. [18] can be

rewritten as

�b

�w
∼

(
R0

h

)3/2 1

c(θ ) ln(Rb/λ)
, [19]

where we let � ∼ Rb. Therefore, it can be easily shown that
when R0 � Rc, �b dominates over �w and vice versa when
κ−1 	 R0 	 Rc, where the critical radius Rc = h[ln(Rb/λ)]2/3.
As R0 reduces to the similar order as κ−1, the lubrication-flow
region vanishes and naturally the wedge flow dominates.

Summarizing the foregoing evaluations of the viscous dissi-
pation, we obtained the magnitudes of the two dissipation mech-
anisms, i.e., the wedge dissipation and the bulk dissipation. The
wedge dissipation by the Stokes flow accounts for the dissipation
in the edge of a large drop or the dissipation arising in the entire
volume of a small drop. The bulk dissipation by the lubrication
flow is due to a fluid motion taking place in the central part of a
large drop. Therefore, the total viscous dissipation, �v, is given

by �v ∼ �w for a small drop (R0 	 Rc), and �v ∼ �w + �b

for larger drops.
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3.3. Steady Sliding Velocity

The steady velocity of a sliding drop is determined by the
balance between the rate of change of gravitational potential
energy and the dissipation: �g = �l + �v. First we consider
a small drop (R0 	 Rc) in which the wedge dissipation is a
dominant viscous dissipation mechanism. Using Eqs. [2], [7],
and [14], the steady velocity U can be given by

U ∼ ρV g(sin α − sin αc)

µLc(θ ) ln(�/λ)
[20]

or considering Eq. [9],

U ∼ ρV g sin α − σw(cos θR − cos θA)

µLc(θ ) ln(�/λ)
. [21]

On the other hand, for larger drops, using �v = �w + �b, we
get

U ∼ ρV g(sin α − sin αc)

µ[Vb/h2 + Lc(θ ) ln(�/λ)]
. [22]

When a drop is extremely large, R0 � Rc, the bulk dissipation
dominates as discussed above and U is given by

U ∼ h

µAb
[ρV g(sin α − sin αc)]. [23]

4. RESULTS AND DISCUSSION

4.1. Comparison with Previous Theoretical Results

Now we compare our scaling results with previous theoretical
predictions (5–8). The most remarkable difference between the
models of (5, 6, 8) and the current one is that our model is not re-
stricted to a small contact angle assumption which enabled the
lubrication approximation. The model of (7) does not assume
a small contact angle, but it treats the problem as a perturba-
tion to a static configuration, neglecting the dynamic terms of
the Navier–Stokes equation. It is noted that the moving contact
line theory advanced by Shikhmurzaev (23) considers the gen-
eral flow configuration not requiring the lubrication assumption.
However, his analysis does not address the specific problem of
a drop sliding down an inclined plane, which is the subject of
the present work.

Hocking’s (5) linear solution for a small, thin two-dimensional
drop is expressed as, in a dimensional form,

U = θ2
0

9µ ln (2Rbθ0/3λ̃)

(
ρgR2

b sin α − 3σθ0ε
)
, [24]

where λ̃ is the slip coefficient corresponding to λθ0 in the present
case, where θ0 = (θA + θR)/2 (see Eq. (2.4) of Ref. (5)), and

ε = (θA − θR)/(θA + θR). To compare Eq. [24] with Eq. [21] in
the case of a thin small drop, we rearrange Eq. [21] into a form
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similar to that of Eq. [24]:

U ∼ θ0

µc(θ0) ln(�/λ)

[
ρgR2

b sin α − 8

π
σ

(cos θR − cos θA)

θ0

]
.

[25]

For θ 	 1, it follows that c(θ0) ∼ 1/θ0. Letting θA = θ0 + �θ

and θR = θ0 − �θ , we get θ0ε = �θ and (cos θR − cos θA)/
θ0 ∼ 2�θ for θA, θR 	 1. Therefore, Eq. [25] reduces to an
almost identical form to Eq. [24] except for the coefficient of a
capillary term (the second term in the brackets).

Durbin’s solution (8) can be expressed as in a dimensional
form

U = θ2
0

µ ln
[
2Rbτcθ0(1 − ε2)1/2

/
3µU

] (
ρgR2

b sin α − 3σθ0ε
)
,

[26]

where τc is the critical shear stress, over which the increase of
shear stress is prevented by slip. Scaling τc ∼ µU/λ̃, where λ̃

is a length scale at which the shear stress reaches τc in this case,
then Eq. [26] becomes identical to Eq. [24] for ε 	 1.

Directly comparing the results of (6) and (7) with the current
modeling is not possible since those results do not explicitly con-
tain viscous effects. However, when the relationship between the
contact line speed and contact angles are expressed as, follow-
ing (6) and (7), U = κA(θA − θapp) for an advancing line, where
θapp is the apparent contact angle, and as U = κR(θapp − θR) for
a receding line, Hocking showed that for a thin small drop (5),

κA = κR = σθ2
0

3µ ln(2Rb/3λ)
. [27]

Upon substituting Eq. [27] into Eq. (5.2) of Dussan V. (7), the
equation becomes identical to Eq. [25] for θ0 	 1. Although the
coefficient of the capillary term in Hocking’s result is different
from that in our scaling result of Eq. [25], the capillary term of
Dussan V.’s three-dimensional result has the same coefficient as
our scaling result when Eq. [27] is substituted. This is because
the capillary term includes the width of the drop base area, w

(see Eq. [9] or [21]), which could not be adequately accounted
for in a two-dimensional theory of Hocking (5) while it was
considered by Dussan V.’s theory (7). Therefore, we may ex-
pect that the primarily affected factor by extending Hocking’s
two-dimensional analysis to a three-dimensional configuration
would be the coefficient of the capillary term that corresponds
to the width of a drop base.

4.2. Comparison with the Experimental Results

Here we compare the experimental results listed in Table 2
with the scaling law constructed above. First we note that the

critical radius Rc for each liquid, at which size the bulk dissi-
pation and the wedge dissipation are of the same order, is so
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large that drops of this scale can hardly be observed in reality.
For example, if we use κ−1 as a very conservative measure of h
and of Rb, then Rc is calculated to be over 10 mm. In fact, drops
of 20 mm diameter are not frequently encountered. Since the
largest drop used in our experiments has a radius of 2.65 mm in
its spherical form, the wedge dissipation is a dominant viscous
dissipation mechanism. Thus, Eq. [20] is to be compared with
the measurement results.

Equation [20] can be further simplified unless the drop “base”
on a tilted plane deforms severely. In this case, we can approx-
imate L ≈ 2π Rb and � ≈ Rb, where Rb is the radius of the
bottom contact area. Moreover, Rb can be approximated using
its value taken by the drop on a horizontal surface, Rb,sc as a
function of R0 and the equilibrium contact angle θc,

Rb,sc

R0
= 41/3 sin θe

(2 − 3 cos θe + cos3 θe)1/3
, [28]

where the subscript “sc” denotes “spherical cap.” The validity
of this spherical-cap approximation deteriorates as the size of
the drop increases and the gravitational pull becomes more im-
portant, but our measurement results indicate that the largest
underestimation error (at the maximum volume) caused by this
assumption is about 15%. Therefore Eq. (20) can be written as

U ∼ ρg

µcs
�, [29]

where s(θe) = Rb,sc/R0 and � = V 2/3(sin α− sin αc)/ ln(Rb/λ).
The most essential feature of the scaling analysis here is that
the variation of the sliding velocity in response to changing
parameters such as drop size and the inclination can be reduced
to the relation as shown in Eq. (29). That is, U is a linear function
of � for a given liquid.

Figure 7 plots the steady sliding velocity of varying liquids
versus �. In evaluating �, we set λ = 10 nm following the
value taken by (13). This appears reasonable for our system
considering that the size of the liquid molecules is below 1 nm
and the RMS surface roughness is 1.3 nm. A further discussion
on the scale of λ is given below. The figure shows that all the
liquids indeed exhibit a linear dependence of the sliding speed
upon the parameter � as predicted by our theory. The straight
line drawn in each plot is from the least square method based
on the experimental data. The fact that the line thus created
nearly intersects with the origin implies that our evaluation of
the critical inclination is highly accurate and compatible with
our theory. We note that the slopes for each liquid are vastly
different due to their different physical properties. Thus, we let
U = γρg�/µcs and compare the values of γ for each liquid
after evaluating c and s for each liquid, which are assumed to
be functions of the equilibrium contact angle only. The results
are shown in Table 3, and we indeed find that the values of γ

are close. This provides another experimental justification to our

theory.
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FIG. 7. The steady sliding velocity of liquid drops on an inclined surface

plotted versus �: (a) EG drops, (b) GW drops, and (c) glycerin drops.
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TABLE 3
The Values of c(θe), s(θe), and γ

Liquid c s γ

EG 0.488 1.48 1.3 × 10−2

GW 0.454 1.44 1.8 × 10−2

Glycerin 0.412 1.39 1.1 × 10−2

As mentioned earlier, λ refers to a distance from a con-
tact line below which the continuum mechanics theory ceases
to hold. A conclusive agreement on the magnitude of λ does
not seem to have been reached yet. However, the relevant
studies report that the slip length, or a length scale at which
the no-slip boundary condition breaks down, ranges between
a few to a few hundred molecular diameters. This measures
O(1 nm) < λ < O(100 nm) (13, 16, 18, 36), and its actual mag-
nitude is also influenced by the interfacial parameters, such as the
strength of the liquid–solid coupling and the thermal roughness
of the interface. To quantify the sensitivity of the sliding velo-
city model to the magnitude of λ, we evaluate ln(Rb/λ) letting
Rb = 10−3 m. While λ varies between 1 and 100 nm, ln(Rb/λ)
only changes by 33%, which is a very weak dependency consi-
dering two orders of variation in λ. In addition, it can be pos-
tulated that λ may vary according to the contact line velocity
as other interfacial parameters such as dynamic contact angles.
However, it seems reasonable to assume its variation to be small,
considering a narrow range of Ca for each drop liquid. Therefore,
it can be stated that the scaling law remains valid even though
an accurate evaluation of λ is beyond the scope of the present
work. Here we add that a similar insensitiveness of the drop
“spreading” rate to the magnitude of λ was revealed by (13).

Recalling the dimensional analysis presented above, the di-
mensionless velocity Ca has such a functional dependency as
shown by Eq. [1]. The relation reveals that the nondimensional
independent parameters associated with the size (R0) of a drop
are only BoT and λ/R0. Assuming that the variation of λ/R0

is very small as discussed above, we may approximately de-
termine Ca as a function of BoT for each liquid. Based on our
experimental results, we plot Ca vs BoT as shown in Fig. 8. It
suggests that Ca depends linearly on BoT, and this is explained
by nondimensionalizing Eq. [20],

Ca ∼ 4π (BoT − BoT,c)

3L̃c ln(�̃R0/λ)
, [30]

where BoT,c = ρgR2
0 sin αc/σ, L̃ = L/R0, and �̃ = �/R0. We

can show that BoT,c depends only on the interfacial parameter
using Eq. [8] with w = 2Rb:

BoT,c = 3

2π
s(θe)(cos θR − cos θA). [31]
angle hysteresis is independent of a drop size at the critical
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FIG. 8. Ca versus BoT for the measurement data obtained in this work.
Squares denote EG drops, diamonds GW drops, and circles glycerin drops.

inclination. Then we find from Eq. [30] that as long as ln(�/λ)
is kept nearly constant, Ca linearly depends on BoT with its
slope determined by the interfacial parameters. Although this is
obtained through the approximate modeling, it is first suggested
to the authors’ knowledge that the steady sliding velocity of a
“partially wetting” viscous drop on a specific solid surface can
be determined using a linear relation between Ca and BoT in a
low-velocity regime.

5. CONCLUDING REMARKS

The sliding of liquid drops down an inclined solid surface is a
complicated phenomenon that involves a three-dimensional dis-
tortion of a free surface and movement of both advancing and re-
ceding contact lines. Experimental measurement for the sliding
velocity is essential to the advancement of our knowledge on
this problem. In this work, we presented the experimental data
for the sliding velocity of partially wetting viscous drops on
a smooth solid surface. Furthermore, we constructed a scal-
ing law that elucidates the functional dependence of the sliding
velocity on various parameters. A simplifying assumption was

made for the shape including the dynamic contact angles and the
peripheral length for a region where Ca is kept low and the drop
ND KANG

distortion due to tilting is small. In this regime, our scaling law
correctly predicts the dependency of the measured sliding veloc-
ity on such parameters as the inclination and the drop volume,
for each drop liquid. Especially, when the drop moves such that
the logarithm for the ratio of the drop size to the microscopic
cutoff length negligibly varies, we showed that Ca and BoT have
a linear relation.
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