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We consider the equilibrium flotation of a two-dimensional cylinder and a sphere at an interface between two fluids.
We give conditions on the density and radius of these objects for them to be able to float at the interface and discuss
the role played by the contact angle in determining these conditions. For cylinders with a small radius, we find that
the maximum density is independent of contact angle but that, for spheres, the contact angle enters at leading order
in the particle radius. Our theoretical predictions are in agreement with experimental results.

Introduction

Small, dense objects are apparently able to violate Archimedes’
principle: they can float at the surface of a liquid despite being
many times more dense than the liquid. Of course, this feat is
only possible because the surface tension of the liquid provides
a vertical force that helps counteract the object’s excess weight.
In fact, the force provided by surface tension is precisely equal
to the weight of liquid that is displaced in the meniscus around
the edge of the object: Archimedes’ principle modified to account
for surface tension.1 As well as being used by water-walking
insects to avoid drowning,2-4 this supporting force also has
applications in self-assembly technologies where solid compo-
nents are supported at interfaces and then spontaneously come
into contact via capillary interactions.5 In this article, we consider
the question of how dense small objects can become and still
float at an interface. We consider, in particular, the flotation of
a two-dimensional cylinder and a sphere and give the maximum
density that these objects can have and still float.

A question of particular interest is how the surface properties
of an object affect its load-supporting properties. Previous work
has assumed that superhydrophobic surfaces should be able to
support significantly larger loads relative to those supported by
surfaces with slightly smaller contact angles.3 We find this to be
the case for small floating spheres butnot for two-dimensional
cylinders.

Flotation of a Horizontal Cylinder

We begin by considering the equilibrium of a cylinder of
densityFs, radiusr0, and contact angleθ at the interface between
two fluids of densityFA andFB, with FA < FB (as depicted in
Figure 1). The interface has a tension,γAB, associated with it.
Balancing the weight per unit length of the cylinder with the
restoring forces arising from surface tension and the Archimedes
upthrust of fluid B on the object, we find that equilibrium requires

Here the angular position of the contact line,ψ, the inclination

of the interface to the horizontal,φ, and the height of the contact
line aboVe the undeformed interface,h/, determine the position
of the cylinder at the interface. The first term on the right-hand
side of eq 1 is the vertical component of the surface tension
acting on the cylinder. The second term is the vertical force
provided by the Archimedean upthrust on the cylinder, which
is equal to the weight of fluid B displaced by the hatched region
in Figure 1, as shown by Keller.1

We are interested in the interplay between surface tension and
gravity, and so it is natural to use thecapillary length, lc ≡
(γAB/(FB - FA)g)1/2 to nondimensionalize the lengths in eq 1. We
use uppercase letters to denote nondimensional lengths, so that
R0 ≡ r0/lc, H/ ≡ h//lc, and so on. LettingB ≡ R0

2 andD ≡ (Fs

- FA)/(FB - FA), eq 1 then becomes

Equation 2 may be viewed as an equation giving the cylinder
density,D, as a function of the position of the cylinder, which
is parametrized byφ,ψ, andH/. Using the geometrical relationship
φ ) θ + ψ - π, we may eliminateψ from eq 2 in favor ofφ.
The quantitiesH/ andφ may also be related. In two dimensions,
the Laplace-Young equation for the meniscus profile,H(X),
takes the simple form
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π(Fs - FA)r0
2g ) 2γAB sinφ +

(FB - FA)gr0
2(-2

h/

r0
sin ψ + ψ - sin ψ cosψ) (1)

Figure 1. Dimensional notation used for the problem of a single
cylinder floating at the interface between two fluids. Dimensionless
variables are represented by uppercase letters in the text.

πDB ) 2 sinφ + B(-2
H/

R0
sin ψ + ψ - sin ψ cosψ) (2)

5979Langmuir2006,22, 5979-5981

10.1021/la060606m CCC: $33.50 © 2006 American Chemical Society
Published on Web 06/09/2006



where ( )X denotes differentiation with respect toX. This may
be integrated once6 to give the horizontal force balance condition

which may be used to eliminateH/ in favor of φ. With H/ and
ψ eliminated from eq 2, we can then plot the functionD(φ), as
shown in Figure 2. We note, as Rappachietta et al.7 did, that this
shows that there is a maximum density,Dmax, above which a
cylinder cannot be in equilibrium and must therefore sink.

Previously,7,8 it has been noted that, as the radius of an object
decreases, the density it can have without sinking increases. In
Figure 3, we quantify this statement by plottingDmaxas a function
of Bond number for different values of the contact angleθ.
These results show good agreement between the theoretical
calculations and experiments (see Materials and Methods section).
We also note that the value ofDmax does, for these values ofB,
depend on the value ofθ.

By considering the behavior of eq 2 forB , 1, we find that

provided thatθ > π/2. Note that this is independent of the precise
value ofθ. This is simple to understand physically since, forB
, 1, the force contribution from buoyancy is small compared
to that of surface tension. The cylinder is therefore able to support
the largest load when the meniscus is vertical (φ ) π/2) and the
force per unit length that surface tension then provides is precisely
γ, independently ofθ. Figure 4 confirms the asymptotic result
of eq 5 forB , 1 by plotting the computed values ofDmax for
two very different values ofθ (both withθ > π/2). Forθ < π/2,
the meniscus cannot come close to vertical because this would
requireψ > π. We therefore find that, forB , 1 with θ < π/2,

Materials and Methods

In the experiments to measure the maximum density of horizontal
cylinders that can float at an air-water interface, we used hollow
glass cylinders with lengths,L, much greater than their respective
radii (typically,L > 30R) to minimize the three-dimensional effects.
The cylinder radius ranged between 1.5 and 3.6 mm. The surfaces
of the cylinders were coated with different materials, allowing us
to investigate four different equilibrium contact angle conditions.
We obtainedθ ) 72° by spraying a commercial nitrocellulose lacquer
on the cylinder. By dipping the cylinder into molten candillela wax
and paraffin wax, we obtained the surface contact anglesθ ) 93°
andθ ) 104°, respectively. By spraying a mixture of chloroform
and melted alkyl ketene dimer (AKD) on the cylinder surface,9 we
increasedθ to 143°. This high contact angle is attributed to the
microscopic roughness of the AKD surface, which has a contact
angle of 109° on smooth surfaces.10

To find the maximum load that can be supported on the interface,
we varied the cylinder weight by inserting different numbers of

metal wires into the hollow cavity of the cylinder and sealing with
a semi-flexible polymer. By iterating between the weights that float
and sink, the maximum density of a cylinder that floats was obtained
for each contact angle condition and for a given cylinder radius.
Figure 5 shows an AKD-coated cylinder that is only just able to float
on water, as evidenced by the highly curved meniscus.

Flotation of a Sphere

The preceding analysis and physical argument suggest that
the contact angle has only a limited influence on the weight or
density of an object that can float at an interface, provided that
θ > π/2 and that the object is sufficiently small. The complete
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Figure 2. Variation ofD as the interfacial inclination,φ, is varied.
At some critical value ofφ, the cylinder densityD is maximized,
and cylinders with a density larger than this must sink. Here,B )
0.25 andθ ) 2π/3.

Figure 3. Dependence ofDmax on the Bond number,B ) R0
2, for

cylinders with different values ofθ. Theoretical predictions (solid
lines) compare favorably with the experimental results (points). (])
θ ) 72°; (4) θ ) 93°; (O) θ ) 104°; ([) θ ) 143°. The dashed
line shows the theoretical prediction forθ ) 180°.

Figure 4. Dependence ofDmax on the Bond number,B ≡ R0
2, for

cylinders with two different values ofθ over a wide range of Bond
numbers. Theoretical predictions forθ ) 109° (gray) andθ ) 167°
(black) compare well with the asymptotic results (eq 5) forB , 1
andDmax ∼ 1 for B . 1 (dashed lines).
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picture, however, is more complicated. In this section, we show
that, even whenθ > π/2, the precise value of the contact angle
can be of some consequence by considering the conditions
required for a sphere to float in equilibrium.

Balancing the sphere’s weight with the vertical contribution
of the surface tension and the Archimedean upthrust, we find
that the vertical force balance condition has the nondimensional
form:

We may once again consider eq 7 as an equation for the density
of the sphere,D, as a function of its position, parametrized by
H/, φ, andψ. We may again use the geometrical relationshipφ

) θ + ψ - π to eliminateψ from eq 7. There is no analogue,
however, of eq 4, and so, to relateφ andH/, we must numerically
determine the meniscus shapeH(R), where R is the radial
coordinate. This was done by solving the nondimensionalized
Laplace-Young equation in an axisymmetric geometry:11

where ( )R denotes differentiation with respect toR. Equation 8
is to be solved with the boundary conditions

Equations 8 and 9 were solved numerically using the MATLAB
routine bvp4c to determineH/ for a givenφand thereby determine
D(φ), as has been done previously.8 In Figure 6 we present, for
the first time, a plot ofDmax over a wide range of values ofR0.

By maximizing the density asφ varies in eq 7 forR0 , 1, we
find that

This corresponds very well with the numerical results shown in
Figure 6 and works equally well for other values ofθ.

The result in eq 10 is interesting because it is the leading order
behavior ofDmax for R0 , 1 and yet contains aθ dependence,

even thoughθ > π/2. This is in stark contrast to what we found
for long cylinders earlier, where a dependence onθ is only seen
in the higher order corrections. Additionally, this maximum is
attained when the meniscus makes an angleφ ) θ/2 with the
horizontal, in contrast to the near vertical deformation (φ ) π/2)
that is typical of cylinder sinking. Both of these differences are
consequences of the geometry in this situation: as the position
of the contact line is varied, there is a competition between
maximizing the inclination of the meniscus at the contact line
(large values ofψ) and maximizing the contact line length
(requiringψ ≈ π/2). This competition leads to the selection of
an intermediate value ofψ at which D is maximized, and so
introduces some dependence onθ. It is therefore entirely natural
for the corresponding value ofDmax to depend onθ.

Discussion

We conclude that having a very large contact angle does not
enable a cylinder to support significantly larger loads than can
be obtained with cylinders withθ g π/2. This appears to contradict
the results of experiments comparing the load-bearing capacity
of water strider legs (for whichθ ) 167°) with glass fibers
coated to giveθ ) 109°.3 In these experiments, it was found that
the water strider leg could support a force of 152 dynes, while
the glass fiber could support a load of just 19 dynes. Because
these fibers were of similar dimensions (length 9 mm and diameter
∼90 µm), it was concluded that the difference in load bearing
capacity is purely due to their different wetting properties.
Modeling the leg as a long, inflexible cylinder, we find that both
leg and fiber should support forces of around∼140 dynes, which
is in reasonable agreement with the experiment on a water strider
leg but not with the experiment on a glass fiber. This suggests
that there may have been an imperfection in Gao and Jiang’s
modification of the surface of the glass fiber. They used a self-
assembling monolayer of heptadecafluorodecyltrimethoxysilane,
which is known to make a contact angle of 109° with water on
a “flat” surface. Our theory suggests that their observation of a
maximum supportable load of 19 dynes is consistent with a fiber
of the same dimensions, but with a contact angle of 9°, which
is a typical value for water on untreated glass.
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Figure 5. A floating cylinder coated with AKD. The cylinder’s
radius is 3.1 mm and its mass is 4.7 g.
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Figure 6. The numerically determined dependence of the maximum
sphere density,Dmax, on the radius for a sphere with contact angle
θ ) 2π/3. The dashed line shows the asymptotic result (eq 10) for
this value ofθ.
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