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We study the sinking of a dense cylinder initially supported horizontally at an air-water interface and then released.
The sinking motion is studied experimentally and agrees quantitatively with a simple hydrodynamic model of the
process. In particular, our model predicts that the time taken for the cylinder to become immersed in the liquid should
be tsink ∼ O((lc/g)1/2), wherelc is the capillary length andg the acceleration due to gravity, in good agreement with
what is observed experimentally.

It is well-known that the tension of the interface between a
liquid and a gas may allow sufficiently small objects to remain
afloat at the interface even if their density is substantially larger
than that of the liquid. Although this effect is a matter of life and
death for water-walking creatures who rely on it to avoid
drowning,1-3 it is also of importance in practical situations such
as mineral flotation as well as the emerging field of self-assembly
using capillary forces.4

Although some attention has been given to understanding when
objects can float in equilibrium at an interface,2,5,6 the question
of how an object sinks if the balance of forces is upset has not
been considered. This can happen if the vertical force that surface
tension provides is reduced suddenly, which is most easily
achieved by adding surfactant to the water. Contact between two
objects can also lead to sinking, however, because a portion of
the meniscus is then eliminated.7 To highlight the important
aspects of this dynamic process, we study here a simple system
that is amenable to both experimental and theoretical investigation
and find good agreement between the two approaches.

In a typical experiment, a circular cylinder lies horizontally
at the interface between a liquid and a gas, as shown in Figure
1. The density,Fs, of the cylinder is chosen such that the interfacial
tension,γ, and the weight of displaced fluid (of densityF) are
too small for the cylinder to remain afloat without some external
support. Once this support is removed, the cylinder sinks rapidly
takingO(0.1)s to become completely immersed in the bulk fluid.
The dynamics of the sinking process are illustrated by the time
series in Figure 2.

To determine the subsequent motion of the cylinder, we develop
a simple hydrodynamic model of the motion allowing us to predict
the height,h0, of the cylinder’s center above the undeformed free
surface as a function of timet after release. Rather than adopt
a purely numerical strategy such as that of Gaudet,8 we assume

that the meniscus surrounding the cylinder remains in hydrostatic
equilibrium, an assumption that we expect to be valid for times
that are short compared to the characteristic timetc ≡ (γ/Fg3)1/4,
whereg is the acceleration due to gravity. This characteristic
time is that taken for capillary gravity waves to travel the capillary
length, lc ≡ (γ/Fg)1/2, and provides a convenient nondimen-
sionalisation of time. Similarly,lc andγ are the natural scales
for all lengths and forces per unit length, respectively. We adopt
these nondimensionalisations henceforth and denote nondimen-
sional quantities by uppercase letters.

In the experiments we performed (described below), the
Reynolds number of the motion was typically 250. We therefore
assume that the flow induced in the liquid by sinking is potential
flow so that the velocity field in the fluid may be writtenu )
∇æ, where ∇2æ ) 0. This problem is considered in many
elementary texts on fluid mechanics9,10for a cylinder of infinite
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Figure 1. Geometry of a cylinder lying horizontally at the interface
between a liquid and a gas.

Figure 2. Time series of the sinking motion for a cylinder of diameter
5.09 mm (i.e.,R ) 0.93) withFs ) 1920 kg m-3 (i.e., D ) 1.92)
viewed along its axis through the wall of a transparent tank.
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length translating at constant speed in the bulk. If we assume that
the form of the flow in the fluid is not changed substantially from
this, we may write

where the (ê,ψ) coordinate system is a two-dimensional polar
coordinate system with origin at the cylinder’s center (the angle
ψ being measured in the same sense asâ in Figure 1),R is the
(nondimensional) radius of the cylinder, and dots denote time
derivatives. In reality, the velocity potential of the flow will be
modified by the presence of the interface and so will not take
the simple form assumed in (1). However, since the cylinder
starts close to half immersed in the fluid, we expect these
corrections to be small initially and make use of (1) in what
follows.

Since the cylinder is accelerating, the reference frame in which
(1) was calculated is not an inertial frame. The unsteady version
of Bernoulli’s theorem therefore takes the form10

wherePa is atmospheric pressure. The value of the functionF(T)
is determined by requiring that at the contact line,ê ) R andψ
) â, the pressure is hydrostatic (i.e.,P - Pa ) - H). With this
assumption, we may immediately write

and the pressure beneath the cylinder is given by

This then allows us to calculate the vertical component of the
pressure force acting on the cylinder as

Upon lettingD ) Fs/F be the ratio of solid to liquid densities,
we may then write Newton’s second law for the height of the
cylinder’s center of mass above the free surface,H0, in the form

The second term on the right-hand side of (5) represents the
weight of the cylinder acting downward, whereas the third term
arises from the vertical component of the surface tension, which
acts at an angleφ to the horizontal. Substituting (4) into (5) gives
a simple second-order ordinary differential equation forH0(T)
once the values ofφ andâ are determined.

A relationship betweenφ andâ closes the system but must
in general be determined by the numerical solution of the
appropriate free-boundary problem. Here we instead investigate
two much simplified closure models based on observations from
experiments. The first observation is that the measured value of
the contact angleθ is approximately constant over the course of
the experiment (see Figure 3a), although its dynamic valueθd

) 111° is different from the equilibrium value. This is consistent
with the observations of Ablett11 for a hydrophobic solid at an
air-water interface and so is used in both of the models described
below.

The second observation is that the angular position of the
contact line,â, increases approximately linearly in time, so that
the contact line slips past the cylinder at a constant velocity,
Figure 3a. This suggests that the system may be closed in an ad
hoc manner by determining an empirical linear relationship for
â(T) and deducingφ from the geometrical relationshipφ ) θd

+ â(T) - π. Alternatively, this closure may be obtained by
assuming that the first integral of the Laplace-Young equation12

whereH* ) H0 - Rcosâ0 is the height of the contact line, holds.
Since the Laplace-Young equation12 arises from the consid-
eration of hydrostatic equilibrium, eq 6 is entirely consistent
with the assumption of a hydrostatic meniscus of our model. We
expect this assumption to be valid at short times, as already
discussed, and so expect (6) to also be valid at short times.

Both of the approximate closure schemes lead to an evolution
of H0 in reasonable quantitative agreement with experimental
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3
Ḣ0
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Figure 3. Experimental results for a cylinder withD ) 1.92 and
R) 0.93. (a) Measurements of the contact angle,θ, and the angular
position of the contact line,â, measured in radians as functions of
nondimensional time,T. (b) Comparison of two closure models with
experimental data (points). In I,φ is determined using the Laplace-
Young equation, which in turn determinesâ. In II, we use the
empirically determined linear dependence ofâ onT and infer from
this the value ofφ from the geometrical conditionφ ) θ + â - π.

sinφ ) -H*(1 - H*2/4)1/2 (6)
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measurements, as shown in Figure 3b. We stress that there are
no fitting parameters in our model, with the initial velocity of
the cylinder determined from the first three frames of the
experimental movie.

Experiments were conducted using hollow glass cylinders with
length,L, much greater than their radius (typically,L > 30R) to
ensure that three-dimensional effects were minimized. The surface
of the cylinders was coated with a commercial nitrocellulose
lacquer to increase the cylinders’ equilibrium contact angle to
θ ) 72°. When metal wires were inserted into the hollow cavity
of the cylinder and the cavity sealed with a semi-flexible polymer,
the density of the cylinders could be varied simply ensuring that
they were too dense to float unsupported at an air-water interface.
The prepared cylinders were then placed (using a gripper) at the
interface between air and water contained in a transparent tank.
To eliminate the possibility of an interaction with the wall, the
cylinder was placed at least 15 cm away from the walls of the
tank.

Upon release, the cylinder sank rapidly since the vertical force
contribution from the surface deformation was not sufficient to
balance its weight. This sinking motion was observed through
the side of the transparent tank via a high-speed CCD camera
recording images at a rate of 500 s-1 giving rise to the typical
time series illustrated in Figure 2. Image analysis software
(Microsoft Photoeditor) was then used to determine the height
of the cylinder center above the undeformed surface,H0, as a
function of time,T, after release. Typical results are shown in
Figure 4 for a smaller cylinder than was used in Figure 3b.

Along with the experimental results plotted in Figure 4 are a
series of solid lines showing the theoretical predictions for the
cylinder position produced with variants of model I, which was
presented earlier. Again the first three data points were used to

determine the initial cylinder velocity, ensuring that our model
has no free parameters. The simplest of the three variants of
model I is the free-fall of the cylinder (with added mass) in the
bulk liquid.10 This leads to the prediction

which is illustrated by line iii in Figure 4. The solution of a more
refined model, based on (5) but without the third term of the
right-hand side associated with surface tension, is shown by line
ii in Figure 4. Finally, the full solution of (5) including surface
tension is shown by line i.

These show that a very simple model of the sinking process
produces qualitatively similar results to those obtained from
experiments. However, upon including modified hydrodynamic
terms this agreement is substantially improved. Although the
effect of surface tension is fairly small in our experiments, the
model including surface tension agrees well with experiments
right up to the time when a hydrostatic meniscus cannot join to
the cylinder.

All of these models and experimental results indicate that the
sinking occurs over a time scaleT ∼ O(1), which is modified
by multiplicative prefactors that our analysis is able to predict
with a reasonable accuracy. Physically this time scale is the time
taken for the object to free-fall through the capillary length
demonstrating that it is this falling motion that dominates the
sinking process.

That the model presented here is able to capture the essential
features of the motion quantitatively is somewhat surprising since
we have paid only minimal attention to the meniscus profile and
thus to the precise value of the force that is produced by surface
tension. This success is partially due to the fact that the
experiments presented here had a Bond number,B ≡ R2, in the
range (0.1, 1) so that the effects of surface tension do not
completely dominate hydrostatic pressure (as evidenced by the
similarity between the results with and without surface tension).
However, a similar approach that simplifies the contribution
from surface tension has been successfully used to describe the
oscillations of a floating particle in a viscous fluid obtained via
full numerical simulations.13 The success of our reduced model
in describing the results of experiments suggests that similar
approaches may be made to related problems, if only as a first
step to understanding the essential physics.
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Figure 4. Experimental measurements of the cylinder’s center
position as a function of nondimensional time (points) compared to
three variants of the theoretical model for a cylinder withD ) 3.13
andR ) 0.56. Full model of sinking (i) and the full model without
any retardation due to surface tension (ii). Line (iii) shows the free
fall of a fully immersed cylinder, given by (7).

H0(T) ) H0(0) + Ḣ0(0)T - D

2(D + 1)
T2 (7)
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