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Horizontal cylinders floating on liquid surfaces are mundanely observed, whose
examples include the legs of aquatic arthropods and floating larvae, twigs and
hairs. We study the force and energy required to lift the cylinder clear from the
water surface, to evaluate the role of wettability, especially superhydrophobicity, in
the adhesion of floating cylinders. We find that a drastic degree of energy saving
is achieved when lifting a superhydrophobic cylinder as compared with a cylinder
with moderate wettability. This can serve as a starting point to understand how
the superhydrophobicity of the legs of water-walking insects help to propel them
efficiently.

1. Introduction

To lift a horizontal cylinder initially floating on a liquid surface, one needs to exert
force in excess of the cylinder’s weight to overcome the adhesion between the solid
and the liquid. Also, it is a mundane experience that less wettable solid objects need to
be pulled up a shorter distance than more wettable ones before detachment, implying
that less work is necessary. Here we aim to quantify the force of the adhesion and the
energy required to lift the cylinder clear from the liquid surface, which are dependent
on the solid wettability. Horizontal objects floating on liquid surfaces are commonly
observed with the examples including hairs, fibres, minerals, twigs, bacteria and
larvae (Hu & Bush 2005) floating on water. An industrial mineral-separation process
called flotation (Derjaguin & Dukhin 1961) needs understanding of the physics of
detachment.

Another interesting problem involving detachment of floating cylinders can be
found in some insects and spiders. Aquatic arthropods, such as the water strider and
the fishing spider, have such an amazing mobility on water that they float effortlessly
using only tarsi, skate and even jump on water (Hu, Chan & Bush 2003; Bush & Hu
2006). In seeking to understand the relationships between these exceptional functions
and the biological adaptations required to facilitate them, it was found that the
surface of a water strider’s legs is covered with a mat of fine, oriented hairs which
themselves are covered with nanogrooves. This hierarchical structure explains the
observed superhydrophobicity of the legs, which typically have a contact angle near
167° (Gao & Jiang 2004; Bush, Hu & Prakash 2008). It has also been observed that
a single leg is able to support a load 15 times greater than the weight of the water
strider without piercing the air—water interface (Gao & Jiang 2004). It was widely
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assumed that this striking load-bearing capacity is due to the superhydrophobicity
of the strider’s legs. However, recent experimental and theoretical studies (Vella, Lee
& Kim 2006; Liu, Feng & Wang 2007; Song & Sitti 2007) have revealed that less
hydrophobic (having contact angle near 90°) cylindrical rods are able to support
similar maximum loads to superhydrophobic cylinders of the same dimensions. This
is particularly the case for rods with small diameter (water strider legs typically have
diameter 100 pm), suggesting that the superhydrophobicity of these legs can only have
a limited influence on the insect’s static stability at the interface.

The relative insensitivity of the leg’s static load-supporting capability to the precise
level of its hydrophobicity suggests that the water-repellent hairy surface of a water
strider may instead play an important role in dynamic situations. Superhydrophobic
surfaces immersed in liquid have been reported to experience less drag (Choi &
Kim 2006); thus this mechanism may reduce the water resistance when the striders
skate on water (Shi et al. 2007; Bush et al. 2008). The unique properties of these
surfaces can help a submerged water strider being bombarded by raindrops to quickly
resurface on water (Shi et al. 2007). It was also pointed out that the directionality of
microsetae and nanogrooves on the legs may increase the interaction force with water
while the strider propels itself (Bush et al. 2008). The effects of the directionality of
flow slip that can be invoked by those tiny hairs on the friction force between a
fluid and a boundary were quantified by Philip (1972), Lauga & Stone (2003) and
Sbragaglia & Prosperetti (2007). A recent experimental study also showed that tiny
superhydrophobic spheres are able to bounce off the water surface after impact —
something that is not observed with less hydrophobic spheres (Lee & Kim 2008). This
observation implies that strong water repellency is essential for the strider to be able
to jump on water.

Although several qualitative hypotheses of how superhydrophobicity helps the life
of aquatic arthropods on water have been suggested as described above, quantitative
explanations of the role played by their unique water-repellent surfaces can hardly
be found. Considering that a water strider should lift its legs to propel itself, the
study of the detachment process of a floating cylinder can serve as a starting point
to understand the role of superhydrophobicity in the strider locomotion in addition
to the aforementioned practical and mundane implications. In the following, we
formulate the theory to calculate the force and energy required to lift a cylinder clear
from the water surface and experimentally corroborate the results.

2. Theoretical formulation and experiments
2.1. Lifting energy

We consider a solid cylinder of radius ry, length L and density p, being lifted off
liquid having density p, and surface tension y in a quasi-static manner as shown
in figure 1. The work W required to lift the cylinder off the liquid surface can be
obtained by integrating the pulling force F, along the displacement of the centre of
the cylinder cross-section in the y-direction:

hp
W= / F,dy, (2.1
h,
where h, is the position of the centre of the cylinder when floating in equilibrium
(i.e. when F, =0) and A, is the elevation of the cylinder corresponding to the complete
detachment of the liquid meniscus. The force balance states that F, should be equal
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FIGURE 1. Images and schematics of a cylinder being lifted vertically off the liquid surface. (a)
The view along the axis of the cylinder. (b) The view perpendicular to the axis of the cylinder.
The radius, the length and the receding contact angle of the cylinder are 0.23 mm, 39.9 mm
and 50°, respectively.

to the sum of the solid weight F,, the buoyancy Fj, the surface tension force along
the cylinder side F; and the surface tension force at the ends of the cylinder F,:

Fp=E1)+Fh+Fv+Fe- (22)

The weight of the solid cylinder F,=mpigL, where g is the gravitational
acceleration. The buoyancy F, = p,g£2;, where £2; is the volume of liquid bounded
by the wetted surface of the cylinder side, a vertical plane through the three-
phase line and the undisturbed horizontal free surface (Keller 1998). Thus we get
2, =r3L(2h" sin B/ro— B +sin B cos B), where h* is the elevation of the contact line on
the cylinder side and 8 is the angular position of the contact line as shown in figure 1.
The surface tension force along the side Fy, = —2y L sin ¢, where ¢ is the slope of the
tangent of the meniscus at the cylinder side. The force at the ends of the cylinder
F, is equivalent to the weight of the liquid lifted by the cylinder ends (Keller 1998);
thus F, =2p,g52,, where £2; is the liquid volume obtained by integrating 4 as shown
in figure 1(b) over the area on the original horizontal free surface Ay: 2, = [ 4, 1A
For a very long cylinder in which the end effects can be neglected, F; > F,; then
the problem reduces to a two-dimensional one, which was treated for a case F, =0
previously (Vella et al. 2006). For cylinders with finite length in which F, is no longer
negligible as compared with F,, the three-dimensional Young—Laplace equation (Feng
et al. 2007) should be solved:

1 2 z x X 1 3 xx
%h=( +h2) hyy — 2hhohy, + (14 02) h ' 23)

Y (1+h2+n2)"

We employ a finite-difference method to numerically solve and integrate (2.3) over the
area and determine F,. Here we note that F, accounts for the weight of liquid pulled
along with the liquid lifted by the cylinder side near the end as shown in figure 2
which is the computed profile of the meniscus adjoining the cylinder end. Thus F, is
not simply scaled as yry but rather is significantly greater than that.
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FIGURE 2. The profile of the meniscus adjoining an end of a cylinder with the radius 50 um and
0, =160° whose centre is lifted 0.0997 mm above the free surface (xz-plane). The cylinder axis
is parallel to the z-axis, and its end faces the xy-plane. The three-dimensional Young—Laplace
equation was solved assuming that 4 at z=0 is given by the two-dimensional Young-Laplace
equation solved for the cylinder side. Only half the elevated surface (positive x) is shown for
clarity.

2.2. Detachment condition

In integrating F, in y, it is necessary to find h, and h,, corresponding to the initial
and end positions of the cylinder-lifting process, respectively. The initial equilibrium
position A, is obtained straightforwardly by solving (2.2) with F, =0. A condition for
the liquid meniscus to detach from the solid cylinder is needed to predict A;,, which
is elaborated on in the following: As the cylinder is lifted, the menisci touching the
cylinder side approach each other, moving on the lower side of the cylinder. Although
it is possible to theoretically calculate the meniscus profile until the two menisci
eventually meet, our experiments (described below) reveal that the detachment of
the liquid menisci occurs well before the menisci intersect. Thus, we employ a free
energy analysis to find the detachment condition of the liquid meniscus from the
solid surface. Rapacchietta, Neumann & Omenyi (1977) calculated the free energy
differences at various positions of a two-dimensional, infinitely long cylinder with the
reference state being the one in which the cylinder is separated from the fluid interface.
We predict the detaching height 4, using the condition that upon detachment the
difference of the free energy E from that of the reference detached state (E,) vanishes:
AE = E—E, =0. Further elevation of the cylinder without meniscus detachment leads
to a higher energy state than the reference state; thus small perturbations to the system
cause the meniscus to be detached. Figure 3 illustrates the schematic meniscus profile
and AFE versus S.

Lifting a cylinder keeping contact with the liquid menisci causes the free energy
change of liquid associated with the changes of the interfacial areas of the liquid
with the solid (AE;) and with the air (AE;) and the changes of the gravitational
potential energy of the liquid (AEs3). In principle, the surface being hysteretic, the
definition of free energy associated with the change of the liquid—solid interfacial
area is ambiguous. However, as the motion never changes sign, the contact angle is
locked to the receding value, and we can here define an effective free surface energy
difference AE; as

AE, = —2B cos 6, —2% cos 6,(8 — sin B cos ), (2.4)
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FIGURE 3. The schematic of a free energy diagram for a floating cylinder.

where the dimensionless energy E=E /Lroy and 6, is the receding contact angle.
The first and second terms of the right-hand side of (2.4) correspond to the energy
differences due to the change of the interfacial area on the cylinder side and on the
cylinder ends, respectively. Here we write the free energy difference per unit area
Ae=ysc — ysi =y cosb,, where ysg and ys; are the interfacial energy per unit area
between solid and gas and that between solid and liquid, respectively, because of the
following reason: As the force exchanged between the solid and the free surface is
always equal to y cos6,, Ae is exactly equal to this value (principle of virtual works).
An alternative justification can also be provided in the framework of some specific
models of wetting, for instance those proposed by Blake & Haynes (1969) and de
Ruijter, Blake & De Coninck (1999). In this framework, Ae consists of the difference
of the equilibrium interfacial energies per unit area, y cos 6, via Young’s equation, and
the work g done by the force causing the contact line to move per unit displacement
of unit length. Here 6, is the equilibrium contact angle. They suggested a microscopic
model in which the movement of the contact line can be viewed as the motion of
fluid molecules to the neighbouring adsorption site on a solid. The jumping of fluid
molecules between the adsorption sites is caused by the out-of-balance surface tension
acting on the contact line; thus the work ¢ is written as ¢ =y (cosf, — cosé,). Then
we get Ae=7y cosb,. .
The change of the air—water interfacial area causes the free energy difference AE,:

A — Ay

A 22 :
AEzZB(:Cz{\/5—[1—COS(9r+,3)]I/2}—251n:3+2 oL 0 2

where the Bond number Bo= p, grd/y and A; is the interfacial area between the air
and the liquid lifted by a cylinder end. The first two terms of right-hand side of (2.5)
are due to the change of the interfacial area of the liquid lifted by the cylinder side
with the air, and the last term is due to the change of the interfacial area of the liquid
lifted by the cylinder end with the air. As the menisci are lifted with the cylinder, the
gravitational potential energy of the liquid changes. The work to depress or raise the
liquid volume by the cylinder side, represented as the hatched area in figure 4, causes
the free energy difference AE5;:
.22\

st =3 (5,) {0-coso 417 preoss £ p1-V2} 2o
The free energy change associated with the work to raise or depress the liquid
underneath the cylinder, whose volume corresponds to the grey area in figure 4, is
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FIGURE 4. The view along the axis of the cylinder for the liquid elevated or depressed by the
cylinder (a) for |ho| < ro and (b) for |hg| > ro.

given by
A . 1. . 1.
AE3 = Bo {cosQa sin 8 — (,3 + 3 sin 2,3) cosa +sin B — 3 sin’ ,8] (2.7)

for |hy| < ry and

0

* 2 *
AE3 = Bo Ki) sin 8 + <1 — % sin’ ,B) sinf8 — B cosf — }rl—(,B — sin,Bcos,B)]
0
(2.8)

for |ho| > ro, where « is the angular position at which the extended undeformed free

surface intersects the cylinder. The last contribution to AE5 comes from the work to
raise or depress the volume of the liquid around the cylinder ends:

A Bo
AEy; = oo /A h*dA,. (2.9)
b

Thus the total free energy associated with the work to lift the liquid weight
AE;=AE;3 + AE3 4+ AE3;.

2.3. Experiments

Before discussing the results of the theoretical work to lift cylinders, we describe
the experiments performed to corroborate our theory. Starting from the equilibrium
position with F, =0, which is a stable equilibrium in which the total free energy
change, AE=AE 1+ AEZ + AE;, is negative, we gradually lift the cylinder to find F),
as a function of hy. When the theoretically calculated AE reaches zero, the cylinder
is assumed to be completely detached from the liquid surface. To verify our theory,
we measured the force required to lift a floating thin cylinder off the water surface as
a function of the cylinder location. In the experiments, the stainless steel wires with
ro =400 um, L =4 cm and p, = 8000 kg m~> were coated with three different materials
to vary the solid’s wettability. By spray-coating the wire with a nitrocellulose lacquer
(NL), we obtained the receding contact angle of 6, = 50°. By dip-coating the wire with
paraffin wax (PW), we obtained 6, =96°. Superhydrophobic wires were fabricated by
spray-coating the wire with a mixture of melted alkyl ketene dimer (AKD) and
chloroform, which resulted in 6, = 148° (Torkkeli et al. 2001). The receding contact
angles were measured by pulling planar sheets coated with each material out of water
with the same speed as used in the main experiments (10 pms~'). The images of the
menisci were taken from the side with a camera of 512 x 512 pixels. The range of error
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FiGure 5. Pulling force versus cylinder elevation. (a) Comparison of the theoretical predictions
(solid and dashed lines) and the experimental results of F, as functions of the location of the
cylinder centre. The solid lines correspond to the theoretical results considering the weight of
liquid adjoining the cylinder ends (F,) in (2.2), while the dashed lines correspond to the results
neglecting the three-dimensional effects caused by F,. The circles, squares and triangles denote
the measurement results for the wires coated with NL (surface I: 6, =50°), PW (surface II:
6, =96°) and AKD (surface III: 6, = 148°), respectively. In the experiments, the force drops
suddenly after reaching the maximum because the meniscus-detaching process ensues. The
insets show the meniscus profiles corresponding to the moment of detachment for each contact
angle condition. (b) Comparison of theoretical pulling forces for the cylinders (solid lines) used
in (a), the spheres with the same surface area (dashed lines) and the spheres with the same
volume (dotted lines) as those of the cylinders.

in the contact angle measurement is +1°. To measure the force exerted on a wire in
contact with water surface, we used a surface tension meter (Data Physics DCAT21),
in which the wire was fixed on a balance located at the top of the apparatus, and the
water vessel moved down at the rate 10pms~'. The errors associated with reading
the position and the force are within +0.1 pm and +0.1 pN, respectively.

3. Results

The force measurement results are compared with the theory in figure 5(a). The
theoretical force values considering the liquid weight adjoining the cylinder ends as
well as the cylinder side agree well with the experimental results, while the two-
dimensional model excluding the liquid weight surrounding the cylinder ends exhibits
increasing discrepancy with the experiments with the increase of hy. Furthermore, the
theory predicts the cylinder height, where the liquid menisci are detached from the
solid fairly accurately. On the other hand, a simplistic hypothesis that the cylinder is
detached clear from water when the two hanging menisci intersect each other predicts
detachment heights which are approximately four times greater than those obtained
from the free energy analysis above (h, =5.17mm for an NL cylinder, 4, =3.88 mm
for a PW cylinder and 4, =1.78 mm for an AKD cylinder, using the simplistic
detachment hypothesis). We find that the more hydrophobic the cylinder, the smaller
the area below the force curve which corresponds to the work required to lift each
cylinder off the liquid surface. This considerable reduction of lifting energy with the
increased hydrophobicity is caused by the fact that a more hydrophobic cylinder
floats higher initially with a smaller area being wetted (the force curve starting from
higher /() and that the liquid menisci are detached from the cylinder earlier (the force
curve ending at lower hy).
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FiGURe 6. The work required to lift a cylinder having the characteristic dimensions of a water
strider’s leg, L =5.5mm and ro =60 pm, for different contact angles. The circles denote the
theoretical results considering the three-dimensional effect due to the meniscus at the cylinder
end, and the squares correspond to the two-dimensional results neglecting the cylinder end
effects. Although the two models predict slightly different detachment height, we used the same
detachment height for both the calculations that was from the three-dimensional model.

Figure 5(b) compares the pulling force for the three-dimensional cylinder of
figure 5(a) with the forces required to pull the spheres with the same volume and
with the same surface area as those of the cylinder. The force components due to
buoyancy and surface tension and the free energy change associated with the sphere-
lifting process are given by Rapacchietta & Neumann (1977). We used the same
criterion for the meniscus detachment, i.e. AE =0, for the spheres. The forces to
pull the spheres are shown to be considerably less than that for the cylinders. This
is primarily due to reduced contact line length of the spheres which determines the
magnitude of the surface tension force. The sphere of the same volume as that of a
cylinder with L > rq has the radius ry ~ (r3L)"3. Thus the ratio of the contact line
length of the sphere [, and that of the cylinder /- becomes Iy /I ~ (ro/L)*?. For the
sphere of the same surface area with the radius r4 ~ (roL)'/?, the ratio of the contact
line length of the sphere I, and I¢ is 4 /lc ~ (ro/L)"/?. Figure 5 shows that the sphere
with the same volume needs less pulling force than the sphere with the same surface
area, a tendency consistent with Iy /lc < 1,/lc.

Our general theory to predict the force and energy to detach a cylinder from the
water surface can be applied to a biologically relevant situation. Considering that the
legs of water striders are superhydrophobic, we compare the energy values required to
lift legs having the characteristic dimensions of a leg of a water strider Gerridae (Hu
2006), L =5.5mm and ro=60pum, with varying wettability. Integrating the pulling
force to lift the leg until the menisci are detached for different contact angles leads
to the results as shown in figure 6. The figure shows a dramatic reduction of energy
when the leg becomes hydrophobic: the required work is 1.21 nJ for 6, =160°, only
1.96 % and 5.55 % of the work required for 6, =90° and 120°, respectively. Hu (2006)
measured the leaping height of a 4.5 mg heavy water strider to be 5 cm, to find that
the associated potential energy increase reaches 2.2 pJ, giving a characteristic value
of work per stroke in the strider propulsion. Considering that the strider’s six legs
are wet over the perimeter of 22 mm, the values of the energy required to lift the
legs of the same size off water but with the contact angle 10° and 90° are 0.75 pJ
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(34 % of the characteristic work) and 0.25 pJ (11% of the characteristic work),
respectively. However, when the contact angle increases to 160°, the lifting energy
becomes as small as 4.85nJ, only 0.22 % of the characteristic work. Although our
analysis oversimplifies the real motion of the water strider legs as discussed below,
the foregoing calculation suggests that the strider with water-repellent legs can avoid
wasting energy to overcome the legs’ adhesion with water in a routine life of skating
and jumping.

4. Discussion

The theory that was developed and experimentally corroborated in this work
enabled us to calculate the work needed to lift horizontal cylinders clear from the
water surface. The superhydrophobicity of the cylinder was shown to dramatically
reduce the detachment work, and the degree of energy saving was quantified. In
addition to providing an analytical tool to understand the mundane phenomena of
wet adhesion of floating objects, our work can be employed to understand an industrial
mineral-separation process, flotation, and the biological locomotion associated with
aquatic arthrodpods with some limitations as discussed below. As the biologically
inspired robotic technology advances rapidly (Hu et al. 2007), our theory can also
be applied to predicting the driving power of the robots mimicking the aquatic
arthropods that seem to have been evolved to save energy so efficiently.

Although our current theory can be applied to understand a role of the
superhydrophobicity in the aquatic arthropod locomotion, our focus has been on
a quasi-static process of vertical lifting; much remains to be done to further the
understanding of the role of super-water-repellent hairy structure of the water strider’s
leg in more realistic locomotion scenarios. Firstly, dynamic effects associated with the
motion of the leg and the surrounding fluid need to be added when the leg moves
with a velocity U that is no longer negligible. Then the force balance should include
the inertia of the leg (~,0Sr§LU ) and of the surrounding water (~,owr§LU ), viscous
friction (~(p,uroL?U?)?) and form drag (~p,U?ryL), where the overdot denotes
the time derivative and u is the water viscosity. Furthermore, the dynamic meniscus
shape no longer follows the Young—Laplace equation and must be calculated by
solving for the full fluid flow problem, as has recently been done for the impact of a
small object onto a liquid surface (Vella & Metcalfe 2007). This dynamic evolution
will alter the volume and the interfacial area of liquid dragged upward by the rising
solid. Secondly, one needs to consider a case in which a water strider lifts its legs
oblique rather than perpendicular to the horizontal, especially when skating. Bush
et al. (2008) postulated that the water strider withdraws its leg after the driving stroke
in such a direction that a peeling of the tilted flexible nanohairs covering the leg
occurs. Then the directional wettability of the leg may play an important role. One
also needs to consider the fact that the water strider leg surface is covered by a series
of hairs that are inclined relative to the leg, bending so as to lie roughly parallel to
the leg axis. The sum of the detachment force on an individual hair would be the
total force experienced by a leg, and the smooth cylinder approach as adopted here
may be valid only when the spacing between hairs is sufficiently small.

We thank Dr Dominic Vella for stimulating discussions. This work was supported
by Korea Research Foundation grants (KRF-2006-331-D00068 and KRF-2007-412-
J03001) administered via SNU-IAMD.
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