J. Fluid Mech. (2015), vol. 782, pp. 479-490. (© Cambridge University Press 2015 479
doi:10.1017/jfm.2015.568

A scaling law for the lift of hovering insects

Jeongsu Lee', Haecheon Choi' and Ho-Young Kim!'f

1Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, Korea

(Received 30 March 2015; revised 10 August 2015; accepted 22 September 2015)

Insect hovering is one of the most fascinating acrobatic flight modes in nature,
and its aerodynamics has been intensively studied, mainly through computational
approaches. While the numerical analyses have revealed detailed vortical structures
around flapping wings and resulting forces for specific hovering conditions, theoretical
understanding of a simple unified mechanism enabling the insects to be airborne is
still incomplete. Here, we construct a scaling law for the lift of hovering insects
through relatively simple scaling arguments of the strength of the leading edge vortex
and the momentum induced by the vortical structure. Comparison of our theory with
the measurement data of 35 species of insects confirms that the scaling law captures
the essential physics of lift generation of hovering insects. Our results offer a simple
yet powerful guideline for biologists who seek the evolutionary direction of the shape
and kinematics of insect wings, and for engineers who design flapping-based micro
air vehicles.
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1. Introduction

Insects can move more freely in air than most other creatures on Earth. In particular,
insect hovering is one of the most fascinating acrobatic flight modes which has
defied an explanation in terms of conventional aerodynamics for decades. Since a
quasi-steady analysis of conventional aerodynamics was considered inappropriate for
explaining the hovering dynamics (Ellington 1984a,b), unsteady mechanisms have
been actively sought which can rationalize the aerodynamic force production through
flapping. Several pioneering studies have found important unconventional mechanisms
of hovering insects, such as the leading edge vortex (Ellington et al. 1996), wake
capture and rotational mechanisms (Dickinson, Lehmann & Sane 1999).

Wing flaps of hovering insects can be largely decomposed into a translational mode
and a rapid rotational stroke-reversal mode, which contribute to lift in different ways.
The unusually large lift produced during the translational mode has been explained
by a highly stabilized leading edge vortex that is attached to a wing even above a
critical angle of attack (Ellington et al. 1996). It is during wing translation that most
of the vertical force used to balance the weight of hovering insects is generated (Fry,
Sayaman & Dickinson 2005; Liu & Aono 2009; Kweon & Choi 2010). It has been
suggested that the wing rotation during stroke reversal produces instantaneous force
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peaks via the Kramer effect and interactions with previously existing wake structures
(Dickinson et al. 1999; Sane & Dickinson 2002).

Further elaborated understanding of the flow fields around hovering insect wings
has been achieved by recent flow measurement experiments (Poelma 2006; Lentink
& Dickinson 2009; Cheng et al. 2013) and numerical simulations (Bos et al. 2008;
Liu & Aono 2009). The leading edge vortex was shown to be stably attached
in revolving conditions for the most relevant range of Reynolds numbers for insect
hovering, O(10*)-O(10*). The spiral leading edge vortex ensures low-pressure regions
on the flapping wing, which enhance the lift. Three-dimensional digital particle image
velocimetry (DPIV) experiments on a dynamically scaled model wing give a detailed
picture of the vortical structures around the wing, where separation occurs all around
the wing edges (Poelma 2006; Cheng et al. 2013). The separated vorticites form
organized vortical structures, inducing the downward momentum responsible for the
vertical force generated by flapping. Numerical simulations of hovering insects were
shown to be consistent with the flow measurements on the model wing (Liu & Aono
2009). It was suggested that the tip vortices contribute to the aerodynamic lift by
creating the low-pressure region near the wing tip and constructing the downward
momentum (Shyy et al. 2009), in contrast to conventional aerodynamics where the
tip vortex has a detrimental influence on the lift.

In searching for a simple model for the lift of hovering insects, the quasi-steady
model was revised based on dynamically scaled model wing experiments (Dickinson
et al. 1999; Sane & Dickinson 2002; Fry et al. 2005). In this model, the lift L is
written as L = O.SpU,%SCL(a), where Uy is the velocity of the radius of gyration,
S is the wing area, C, is the lift coefficient and « is the angle of attack. The lift
coefficients are obtained using the force measurement data under steady wing velocity
and angle of attack in experiments on revolving wings (Dickinson et al. 1999). The
temporal evolution of the lift of hovering insects was reconstructed by the revised
quasi-steady model.

However, we suggest that it should be further justified whether the force coefficient
is the most suitable dimensionless parameter for flapping locomotion including insect
hovering for the following reasons. In steady translation of the wing, the lift is a
function of the fluid density p, viscosity p, wing velocity U, wing chord ¢, wing span
R and angle of attack «. Then, dimensional analysis gives the following functional
dependence of the dimensionless lift:

L pUc R
——=fn|—1, —,a |, (1.1)
pU?c? n o c
where L is the lift. For the lift coefficient defined as C; = L/(0.50U%S) with S =R,
we obtain Ue R
C, = fn <pc, ,a>. (12)
R nw c

This tells us that steady translational wings of identical aspect ratio and angle of
attack have the same lift coefficient regardless of change in velocity and area under
the assumption that the ratio of inertia to viscous forces is large enough to neglect
the effects of the Reynolds number, Re = pUc/u. Theoretical analysis also confirms
that the lift coefficient is expressed as a function of the aspect ratio and angle of
attack (Newman 1977). Hence, in steady translation of the wing, the lift coefficient is
a suitable dimensionless parameter to interpret the dimensionless lift of various wings
of different speed and area.
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On the other hand, the lift of the wings in flapping conditions is a function of
the flapping frequency n and flapping amplitude @ as well as p, u, U, ¢, R and «.
Dimensional analysis yields

L pUc R cn
=fn|—7yV\ —, a0, —, D). (1.3)
pU?c? n o c U
Therefore, C; is written as
Uc R
G=<m (22520 o). (1.4)
R n U

In contrast to steady translational wings, wings at the same angle of attack and aspect
ratio can have different lift coefficients under the influence of the reduced frequency
(ecn/U), which is a measure of the relative unsteadiness of the wing motion. In
particular, for the wing flaps in hovering conditions, the reduced frequency can be
written as cn/U ~ cn/(R®f) ~c/(RP) by assuming U ~ RPn. The reduced frequency
is then expressed as the ratio of the wing chord ¢ and the distance travelled R®,
which corresponds to the inverse of the Keulegan—Carpenter number (Keulegan &
Carpenter 1958). Although the reduced frequency plays a significant role in oscillatory
flows (Keulegan & Carpenter 1958; Diitsch ef al. 1998; Jones 2003; Bidkar et al.
2009), its influence is not considered in the conventional model.

Actually, considerable inconsistency is found between the proposed lift coefficients
even at the same angle of attack and aspect ratio depending on the experimental
conditions (Willmott & Ellington 1997b; Sane 2003; Lentink & Dickinson 2009). If
C; is a function of « only, as treated in a revised quasi-steady model, the data should
be gathered onto a single curve in a polar plot, which turns out not to be the case.
This hints at an incomplete role of the lift coefficient in describing forces in flapping
condition. Moreover, a recent publication exists which points out the problem of
the conventional fluid-dynamic model in flapping locomotion. Dewey et al. (2013)
showed that the thrust, 7, of flapping propulsion cannot be adequately explained
when using the conventional thrust coefficient Cr = T/(0.5p0U>S). The experimental
data for flapping panels did not collapse onto a single curve when plotted using Cr
(figure 4b therein). Instead, using a novel dimensionless variable, T = T/(pRc*n?),
the data were gathered onto a single trend curve (figure 8a therein). We will show
that the novel dimensionless variable proposed by Dewey et al. (2013) is consistent
with our scaling law for the lift in the following.

In this regard, we seek a simple theory to estimate the forces that enable insects to
be airborne without resorting to empirical lift coefficients. We construct a scaling law
for the lift of hovering insects as a function of their morphological and kinematic
parameters. The simple physical understanding obtained through this work can help
one to elucidate the evolutionary pressure of shape and kinematics of insect wings,
and to establish design rules for flapping-based micro air vehicles.

We first revisit conventional aerodynamics to check its relevance. In the conventional
steady potential-flow theory, the lift of a wing is obtained by the following two steps.
First, the flow field around the wing is determined by the continuity equation and
the boundary conditions composed of a kinematic boundary condition on the wing
surface, a smooth flow-off requirement at the trailing edge and the far-field velocity.
These kinematic relations give the velocity field and instantaneous circulation around
the wing. Second, the Kutta—Joukowski theorem gives the lift of the wing as the
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FIGURE 1. (Colour online) Experimental apparatus to visualize the flow field.

product of the fluid density, the free-stream velocity and the circulation bound to
the wing (Newman 1977). We suppose that the first kinematic step still holds for
hovering insect wings because the separating flow is confined around the leading
edge vortex and a smooth flow-off condition is recovered at the trailing edge (Birch
& Dickinson 2003; Sane 2003). However, the second dynamic step is far from valid
for hovering insect wings, which flap in a cyclic manner only after several chord
lengths of travel. The separated vorticity of the leading and trailing edges remains
in the vicinity of the wing during most of the stroke cycle (Poelma 2006; Liu &
Aono 2009; Jardin et al. 2012). Instead of the Kutta—Joukowski theorem, we need to
consider the momentum of the flow field induced by the vortical structures around
the wing directly so as to model the lift.

In the following, therefore, we first approximate the instantaneous circulation of
the leading edge vortex of hovering wings, which is assumed to play a dominant
role in lift production, using the steady theory. We next measure the strength of the
leading edge vortex of a dynamically scaled robot wing to test whether the steady
aerodynamic theory provides a reasonable approximation for the strength of the
leading edge vortex. We then construct a novel model for the momentum induced
by the vortical structure around the wing, which eventually determines the lift. Our
theory is tested by comparing the scaling law with the weight data for various species
of insects.

2. Experimental apparatus

A rectangular rigid acrylic flat plate of 1 mm thickness is attached to a rod, which
is driven by a linear stage (Newport IMS-LM), as shown in figure 1. The span
of the plate is varied as 4, 6 and 8 cm and its chord is varied as 1.5, 2, 2.5, 3.5
and 4 cm. The flat plate and rod assembly is immersed in a water tank measuring
125, 15 and 25 cm in length, width and depth respectively. The free surface is
10 cm above the top of the flat plate. While the plate is linearly translated along the
length of the water tank, the velocity varies sinusoidally to complete a half-period
as U(t) = Uy sin(mt/T) for the time interval 0 <t < 7T, with U, being the maximum
velocity. The velocity fields and vorticity contours are obtained by two-dimensional
DPIV. Polyamide particles of 50 wum diameter are used as seeding particles. The
central plane perpendicular to the plate is illuminated to visualize seeding particles
with an 8 W continuous laser of 532 nm wavelength through a slit. The images
captured by a high-speed camera (Photron APX-RS), consisting of 1024 x 1024 pixels,
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are analysed to generate a velocity field with a 64 x 64 interrogation size and a 75 %
overlap. The derived velocity vectors are validated by a dynamic mean value operator.
The vorticity field is obtained using commercial graphic software based on the derived
velocity field.

3. Results and discussion
3.1. Estimation of leading edge vortex strength

The shear flow separated at the leading edge of a hovering insect wing spirals into
the leading edge vortex. Thus, the strength of the leading edge vortex is related to
that of the shear flow generated on the wing, which is modelled as vortex sheets in
the classical steady aerofoil theory. We scale the strength of the leading edge vortex
via the circulation around a three-dimensional wing (Newman 1977), I', as

UcAsina

) 3.1
A+2 G-

where ~ signifies ‘is scaled as’, U is the free-stream velocity, « is the angle of attack
and ¢ is the mean chord. Here, A = R/c is the aspect ratio, with R being the wing
span. To test whether the present model provides a reasonable approximation for the
strength of the leading edge vortex on wings operated in hovering conditions, we
measured the vorticity of flows around a flat plate translating linearly at high angles
of attack within a water tank. The ranges of all independent parameters, such as
wing velocity, stroke distance, angle of attack, wing span and chord, were selected to
dynamically scale the characteristic values of the wings of hovering insects (see the
supplementary data available at http://dx.doi.org/10.1017/jfm.2015.568). The Reynolds
number, Re = pUc/u, ranged from 200 to 3500, the dimensionless stroke amplitude
(A, the ratio of stroke distance to mean chord) from 1.6 to 3.4, o from 25° to 70°
and A from 1.5 to 2.7.

Figure 2(a) displays the representative velocity field and the resulting vorticity
contours. The leading edge vortex was identified using the criteria proposed by
Jeong & Husssain (1995), as shown in figure 2(b). Figure 2(c) plots the measured
instantaneous circulation in the leading edge vortex at t = 7/2 during translation
according to the scaling law (3.1) for 19 cases. All of the data collapse onto a
straight line with a slope 3.06, which is very close to the value expected from
conventional aerodynamics, 1 (Newman 1977).

3.2. A model for lift

Now we move on to the lift of hovering insects by considering the momentum induced
by the vortical structure generated by the wing stroke. Because the vortical structure
around the wing is characterized as the vortex loop over the wing (Poelma 2006;
Liu & Aono 2009; Jardin et al. 2012), we approximate the momentum induced by
the vortical structure, Al, as Al ~ pI'S ~ pI"'Rc (Dickinson 1996; Wu et al. 2006;
Lee et al. 2013). The reaction force exerted on the wing due to the time derivate of
vortical impulse is scaled as F'~ Al/T ~ pI"Rc/T, which is perpendicular to the wing
surface. Here, T is the flapping period.

For the flapping translation of hovering insects, the linear velocity of the wing is
scaled as U ~ @Rn, with @ and n being the stroke amplitude and flapping frequency
respectively. Thus, the circulation around the leading edge vortex can be scaled as
I' ~®RncAsina/(A+2) via the scaling relation (3.1). By combining these relations,
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FIGURE 2. (Colour online) (a) Velocity field and vorticity contour around a translating
wing with Re =2500, « =45, A=1.7 at t=T/2. (b) Isolated leading edge vortex around
an identical wing. (c¢) Instantaneous circulation, I", of the leading edge vortex at t=7/2
versus the scaling parameter UycA sina/(A + 2).

we obtain the scaling approximations of lift and drag with respect to the stroke plane
as L~ p®R*c*n* Asinacosa /(A +2) and D~ p®R*c*n® Asin® a/(A +2) respectively.
The vertical component of the aerodynamic force produced balances the insect
weight, W. The contribution of drag to the vertical component of the period-averaged
aerodynamic force is very small compared with that of lift because the drags during
up- and downstrokes cancel each other out except for dragonfly-like wing motions
having severe asymmetry of up- and downstrokes (Wang 2004; Park & Choi 2012).
By balancing the vertical component of the lift with the insect weight, we obtain

W~ 05p0 R 2502 g, 3.2)
A+2

where B is the stroke plane angle, that is, the angle between the horizontal and
stroke planes. We note that our scaling law for the lift is consistent with the novel
dimensionless thrust proposed by Dewey et al. (2013), L ~ pR*>c*n’n, where n is a
function of geometrical parameters, as mentioned in § 1.
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FIGURE 3. (a) Illustration to define morphological and kinematical parameters of hovering
insects. (b,c) Weight of the insect versus (b) frequency and (c) the scaling parameter
pPR*En*(A/(A +2)) cos B. We compare our theory with experimental observations (83
data points) for 35 species of hovering insects (Weis-Fogh 1973; Ellington 1984c¢,d; Ennos

1989; Willmott & Ellington 1997a,b; Fry et al. 2005; Liu & Sun 2008; Walker et al.
2010; Mou, Liu & Sun 2011). In (¢), the straight line corresponds to y=11.4x.

We first compare our theory for lift with the data (see the supplementary data)
for 35 species of hovering insects from previously published papers that report the
wing dimensions, flapping frequency and body weight (Weis-Fogh 1973; Ellington
1984c,d; Ennos 1989; Willmott & Ellington 1997a,b; Fry et al. 2005; Liu & Sun
2008; Walker et al. 2010; Mou et al. 2011). While the raw data scatter considerably
when plotted against one of the most influential factors in the force production, the
flapping frequency, figure 3(b), the data plotted according to the scaling law collapse
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FIGURE 4. Experimental validation of the normalized scaling law, (3.3). We compare
our theory with experimental observations (32 data points) for six species of hovering
insects (Ellington 1984c,d; Willmott & Ellington 1997a,b; Fry et al. 2005; Liu & Sun
2008; Walker et al. 2010; Mou et al. 2011).

onto a master curve, figure 3(c). Since most of the experimental observations do
not report the angle of attack, we have simply modified the scaling law by ignoring
sin 2. Considering that the right-hand side of equation (3.2) varies by up to six
orders of magnitude without sin 2«, the variation of sin 2« for different insects is
indeed insignificant. It varies from 0.6 to 0.9 with the angle of attack changing from
20° to 60°. We validate our theory further with the data for six species of insects
for which the angle of attack during each half-stroke is known (Ellington 1984c.d;
Willmott & Ellington 1997a,b; Fry et al. 2005; Liu & Sun 2008; Walker er al. 2010;
Mou et al. 2011). The weight of the insect normalized by the dynamic pressure force,
0.5pU’R¢, with the characteristic wing tip velocity U ~ ®Rn and the wing area Rc,
is scaled as
2W c

m ~ ﬁm COoS ﬁ sin 2. (33)

We plot the experimental data according to the dimensionless scaling law (3.3) in
figure 4. The scaling law agrees favourably with the experimental observations, with
the slope of the best-fitting straight line being 46.2.

Our analysis is distinguished from the conventional steady potential-flow theory
in that the lift is scaled as L ~ pI'¢R/T rather than L ~ pI"UR, with U ~ ®Rn
(see appendix A). This is mainly due to the difference in the vorticity generation
process. The steady lift production arises from the formation of trailing vortices at
wing tips (freely convecting chordwise vorticity), with its generation rate proportional
to the translational velocity U while the spanwise vortex sheet is bound to the wing
surface. As a result, the evolution of the vortical structure around the steady wing can
be modelled by a single vortex loop with a monotonically increasing area (Newman
1977; Dickinson 1996; Wu et al. 2006). In contrast, on a hovering insect wing,
the vorticity is generated all around the edges, including the spanwise vorticity at
the leading edge (Poelma 2006; Liu & Aono 2009). We have shown that it is the
generation of spanwise vorticity along the wing edges that plays a crucial role in
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producing lift for hovering insects. We also compare our theory and conventional
theory with the lift measurement data for reciprocally translating wings given by
Lentink & Dickinson (2009) in appendix B.

4. Conclusions

Our theory has been shown to successfully capture the dominant physical
mechanism underlying the lift generation in hovering flight, allowing us to obtain a
simple scaling law for the lift with given morphological and kinematic parameters
of the insects. However, detailed fluid-dynamic phenomena associated with hovering,
such as time-dependent flow structures, the force history and the interaction with
the wake, can be adequately accounted for by numerically computing the full
Navier-Stokes equation.

We believe that our theory will not only help one to grasp the essential aerodynamics
of hovering easily but also shed light on some biological observations that have eluded
scientific explanation based on conventional theory for decades (Ellington 1984a;
Dickinson et al. 1999). For instance, the wing load, W/(Rc), of the hoverfly Syrphus
balteatus is ~8.97 N m~2, which is similar to that of the crane fly Tipula paludosa
(~9.11 N m~2) despite dramatic differences in their wing size and kinematics (see
the supplementary data). The stroke angle of the hoverfly wing ranges only from 60°
to 70°, which is almost half of the typical stroke angle of many hovering insects
including the crane fly. The wing chords of the two insects are similar (2.98 mm
for the hoverfly and 3.09 mm for the crane fly), but the wingspan of the hoverfly,
approximately 9.9 mm, is almost half that of the crane fly. However, the flapping
frequency of the hoverfly (124 Hz), which is almost twice as high as that of the crane
fly (58 Hz), successfully compensates for such disadvantages. Our theory allows us to
explain this observation because W/(R¢) is proportional to n*, but scales linearly with
R and ®: W/(Rc) ~n*R®. In other words, hoverflies flap their wings just fast enough
to surmount the drawbacks of small stroke angle and wingspan. The conventional
theory cannot account for this morphological and kinematic dependence because it
predicts W/(R¢) ~ n*R*®2. Our theory provides a clear fluid-dynamic explanation
of how different evolutionary selections for wing kinematics and morphology among
insect species can arrive at the same functionality: hovering with similar wing loads.
We also expect that our scaling law will be a simple yet powerful guideline for
designing flapping-based micro air vehicles.
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Appendix A. Scaling law based on the conventional steady potential-flow theory

In the conventional steady potential-flow theory, the lift and circulation of the
leading edge vortex can be written as L ~ pl'UR and I' ~ UcA sin a/(A + 2)
respectively (Newman 1977; Dickinson 1996). Since the flapping velocity U ~ ®Rn,
the vertical force that balances the weight is scaled as

A
W~p¢2R3En2m sin & cos f. (A1)
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FIGURE 5. (Colour online) Experimentally measured weight of hovering insects plotted
according to (a) scaling law (A1) and (b) normalized scaling law (A 2) based on the
conventional steady potential-flow theory. In (a), the black and red lines correspond to
y~x and y~x"% respectively. The symbols are from figure 3.

The normalized form is given by

w A
pR3®Xen?  A+2

sin & cos B. (A2)

We first plot the experimental data according to (A1) in figure 5(a). The data appear
to collapse onto a master curve with the conventional theory for an obvious reason
that the pressure forces exerted on the wing would grow with the dynamic pressure
and the surface area. However, investigation of the slopes of the lines reveals a
significant difference between the plots using conventional theory (figure 5a) and our
theory (figure 3c). For the conventional theory to hold, the data should collapse onto
a line representing y = ax in log—log plot, where y and x represent the values of the
vertical and horizontal axes respectively. This is shown as a black line in the figure.
Obviously, the biological data do not follow the line y ~ x. Rather, the least-square
method finds the best-fitting line for the biological data to be y ~ x*%, the red
line. This implies that the biological data are consistent with the following power

law: W~ [p@2R*c*n? cos BA/(A + 2)]0'87, which has no theoretical background. We
further plot the experimental data according to the normalized scaling law (A2) in
figure 5(b). The data are scattered rather than collapsing onto a single master curve
as in figure 4.

Appendix B. Comparison with previous experiments on flapping locomotion

We compare our theory and the conventional model with the lift measurement data
for reciprocally translating wings given by Lentink & Dickinson (2009), as shown
in figure 6. The lift increases linearly with our scaling law, figure 6(a), whereas the
lift does not follow what the conventional theory predicts, figure 6(b). In more detail,
the experimental data for Re =110 (circles) and 1400 (triangles) were collected with
the same velocity but by varying the density and viscosity of the fluid. For Re =
14000 (squares), the velocity of the wing and the physical properties of the fluid
were altogether changed compared with the cases of Re = 1400 and 110. The data
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FIGURE 6. (Colour online) The experimentally measured lift of the reciprocally translating
wing in Lentink & Dickinson (2009) plotted according to (a) our scaling law and (b) the
conventional steady potential-flow theory. The circles, triangles and squares correspond to
Re =110, 1400 and 14 000.

plotted according to the conventional model show significant inconsistency when the
wing velocity is changed, whereas all of the data collapse onto a single line when
plotted according to our scaling law.
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