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We investigate the dynamics of an elastic hoop as a model of the jumps of small insects. During a
jump the initial elastic strain energy is converted to translational, gravitational, and vibrational
energy, and is dissipated by interaction with the floor and the ambient air. We show that the strain
energy is initially divided into translational, vibrational, and dissipation energies with a ratio that is
constant regardless of the dimension, initial deflection, and the properties of a hoop. This novel
result enables us to accurately predict the maximum jump height of a hoop with known initial
conditions and drag coefficient without resorting to a numerical computation. Our model reduces
the optimization of the hoop geometry for maximizing the jump height to a simple algebraic

problem. © 2012 American Association of Physics Teachers.
[DOLI: 10.1119/1.3633700]

I. INTRODUCTION

Jumping is used by animals as an efficient means of loco-
motion to escape predators, to catch prey, to increase their
speed, or to launch into flight.! Small insects such as frog-
hoppers,' crickets,” fleas,” grasshoppers,* and water
striders™® are able to jump many times their body lengths.
Their jumps are powered by muscles that rapidly release
stored elastic energy through a latch mechanism.* The major
research foci of the field have been on the anatomical struc-
ture of organs associated with jumping,”™'! the jump kine-
matics,>'*"3 and the power exerted by the muscle that drives
the jumps.*'*

Interest in the jumping of small objects is increasing out-
side biology. Inspired by the superior maneuverability of
those insects, biomimetic robots, which mimic the structures,
functions and designs of living creatures, are being devel-
oped with the goal to jump on land” and water.® Optimizing
the robot design to maximize the jump height is essential,
given the constraints on material properties, size, and
weight.

In contrast, the jump dynamics of small elastic objects
have drawn little interest so far.'? In this paper, we analyze
the dynamics of a model jumper, an elastic hoop, because of
its simple geometry, ease of fabrication, and immediate
implications for biomimetic robots.” Circular-shaped robots
have many advantages such as their structural stability and
superior terrestrial mobility.” Despite the long history of
studying the dynamics of thin and thick hoops,'>™° the
jumps of the hoop have been seldom treated from a strictly
mechanical point of view. As a consequence, questions
regarding the energy efficiency of the jumps of the hoop (the
ratio of the translational kinetic energy to the initially stored
strain energy) and the amount of energy wasted due to the
interaction with the substrate, the hoop vibration, and the
effects of air drag are still unanswered. We address these
questions and obtain the maximum jump height and the opti-
mum design by a combination of experiments and the theory
of elasticity.

II. EXPERIMENTS

To measure the jump height of an elastic hoop off a rigid
substrate, we made hoops of steel (SK5 carbon steel) with
Young’s modulus ¥=196 GPa, density p=8.00 x 10
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kg/ m®, and yield stress'’ g,= 612 MPa. We also used polyi-
mide films (Dupont Kapton) with ¥ =3.55 GPa, p = 1420
kg/m3 , and 6,=69.0 MPa. The thickness 7 of the hoop
ranges between 75 and 125 um, and the radius (the average
of the inner and outer radius in the undeformed state) R is
between 10 and 30 mm; the width is fixed to w =3 mm [see
Fig. 1(a)]. We tested glass, acrylic, and aluminum and found
that the jumps of the hoops are insensitive to the rigid sub-
strate material (the maximum jump height differed by at
most 1% depending on the material). In contrast, when the
substrates are very soft such as a flexible polymer membrane,
the deformation of the substrate has a great influence on the
dynamics of the hoop. All the data in this paper are for a
glass substrate.

A circular hoop resting on the substrate is bent by a sharp
tip which is rapidly pulled back horizontally by a spring to
let go of the hoop without interfering with its motion. We
visualized the resulting motion of the hoop using a high-
speed camera (Photron FASTCAM APX-RS) at the frame
rate 3000 s~ as shown in Fig. 1(b). The location and shape
of the hoop were obtained by digitizing the image, which
consists of 512 x 720 pixels. The object size is calibrated by
imaging a ruler with the identical imaging setup. After
release, the hoop starts to recover its circular shape while
maintaining contact with the substrate (t=0-5 ms) (see Fig.
2). It disengages from the substrate after reaching a perfect
circle (=35 ms). While in the air, the hoop vibrates between
oblate and prolate shapes. By measuring the maximum
height H reached by the hoops for various values of R, 7, and
initial deflection 9, we found that the hoop jumps higher as
the radius is decreased and as the thickness and the initial
deflection are increased. The results are explained in the
following.

III. JUMPING WITHOUT DRAG

We first consider what happens to the initial elastic strain
energy E, due to bending when the hoop jumps. After
release, the hoop’s elastic energy is partially imparted to the
substrate, the amount of which is denoted by E,. The rest is
used to set the hoop in motion. Two different modes of the
hoop motion occur: translation and vibration. Conservation
of energy implies that E,=E;+E, o+ E,o, where E,( and
E, o refers to the initial translational and initial vibrational ki-
netic energy, respectively. E,  is converted to three forms of
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Fig. 1. (a) The geometry of an elastic hoop. (b) The experimental apparatus.

energy during ascent, the translational energy E,, the gravita-
tional potential energy E, = mgh, and the energy loss due to
air drag E,, where m and & are the mass and the instantane-
ous height of the hoop, respectively, and g is the gravita-
tional acceleration. At the highest point, where E,=0 and
h=H, energy conservation can be written as E,
=E+E,+E,+E,.

The elastic strain energy of a hoop can be found from
the linear relation between the compressive force F and
the resulting deformation J: F=kJ, where k:nYW‘r3 /R3
with n=n/[3(n°—8)]=0.56."" We obtain E,=ko>/2
=0.28Ywt°6”/R>. By measuring F and J, we find the linear
relation to hold well beyond the geometrically linear regime
(that is, small deformations compared with the hoop length)
until the upper and lower segments of the hoop touch each
other, that is, d =2R — 1.

To find the energy associated with the motion of the hoop,
we write the velocity of the thin hoop as U(0,?)

= U.()k + Uy(0, 1), where U, is the speed of the center of
mass, k is the unit vector in the vertical direction, and U, is
the velocity of a point in the hoop with respect to the center
of mass. See Fig. 1(a) for the coordinate system. The initial

translational energy is

Eyo = 5mU%(0), M)
where ¢ =0 indicates the time of takeoff. The initial vibra-
tional energy is E,o = (1/2) [U?(0,0)dm. Because the
vibration of the hoop exhibits up-down symmetry upon take-
off and is circular at =0, we write U,(0,0) = —U.(0)k and
U, (7,0) = U.(0)k. For a thin ring freely vibrating in a plane
in its second mode (prolate-oblate shape change), the radial
displacement u# and the circumferential displacement v are
given by u(0,r) = —2Bcos20cos(w,t +¢€) and v(0,r)
= Bsin20 cos(w,t + €), where B is the vibration ampli-
tude, w, is the natural frequency, and e is the phase

20 Am. J. Phys., Vol. 80, No. 1, January 2012

Fig. 2. The jumping sequence of a polyimide hoop with radius R =16 mm,
thickness t = 125 um, and initial deflection 6 = 14 mm.

adjustment to match the initial condition."> Then U,
= (% + i)' = Bw,(4cos?20 + sin®20)"/? cos(w,t), where
the dot denotes the time derivative. If we use U« (m,0)
=2Bw,=U/0), we obtain

5
E,o= Eng(O). )
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Because the vibration s;)eed of a hoop scales as U, ~w,J,
a)nfv[(Y/p)l/zr/RZ],m’1 and U, ~ U, at takeoff, both E, ¢
and £, are scaled by er352/R3just as is E;. Also, the ratio
E,o/E.( is constant, 5/8, due to Egs. (1) and (2). Our meas-
urements of the positions of the top and bottom of the hoop
versus time show that £, ~ 0.57E,, as shown in Fig. 3, and
the proportionality constant is less than 8/13 ~ 0.62 due to
energy loss to the substrate. Note that the conversion of the
initial elastic energy E, to the initial translational kinetic
energy E,, occurs while the hoop is in contact with the sub-
strate (before takeoff). Thus, the effect of air is ignored. It fol-
lows that E, o= (5/8)E,o ~ 0.36E, because of Egs. (1) and
(2), and E; = 0.07E,, by energy conservation. That is, approxi-
mately 57 and 36% of the initial elastic strain energy is con-
verted to translational and vibrational energy at take-off,
respectively, and the remaining 7% is dissipated in the interac-
tion with the substrate. Although we started with a thin ring
approximation S‘L'/R < 1), the vibrational energy of a thick
ring was shown”’ to be proportional to the initial strain energy
for 7/R < 0.5, to which our model can be extended.

We now can obtain a crude scaling law for the jump
height by balancing EI,ONYWI352/R3 with the maximum
gravitational potential energy mgH, leading to

H 126°
e ~ R 3

where we used m =2npRtw and h.=Y/pg, which has the
dimension of length. Figure 4 shows the data plotted accord-
ing to Eq. (3) with a straight line obtained by letting
E,0=0.57E,=mgH. We see that the discrepancy between
theory and experiment grows as H increases, which is due to
the energy loss caused by air drag.

IV. EFFECT OF AIR DRAG

We consider the equation of motion of the hoop in the ver-
tical direction,

mU. = —mg — D, )

where the drag D = Cpp,RwU?. Here Cjp is the drag coeffi-
cient and p,, is the density of air. We obtained Cp, for hoops
with different dimensions and velocities in water by meas-
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Fig. 3. (Color online) Experimental results for the initial translational ki-
netic energy E, and elastic strain energy £, showing their linear relation.
The slope of the best fit line is 0.57.
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Fig. 4. (Color online) The maximum jumping heights of various hoops with
o ranging up to 12 mm, plotted according to the scaling relation H/h,
~2 /R4. The straight line corresponds to the jumping height with no air
drag obtained by letting E, = 0.57E, =mgH. Characteristic error bars are
shown in the upper left corner.

uring the drag force of each hoop at constant speed by a lin-
ear translation stage (Newport M-IMS300LM) with a load
cell (HBM model SP1). Recall that Cp, is a function of the
Reynolds number, Re, and geometry only, not the kind of
fluid.>' We found that for Re = Uw /v =~ 150-1500, where v
is the kinematic viscosity, which corresponds to the current
experimental conditions, Cp ~ 2.32 for hoops satisfying
7/R <0.04. As 1 increases further, Cp decreases, in which
case a separate measurement of Cp is required. Except for
the variation of the numerical values of Cp, our theory holds
for t/R < 0.5.

By integrating Eq. (4), the hoop velocity U .(¢) is given by,

4 U t
U.(t) = \/h L , 5
(1) pg tan (tan TNV /g) ®)

where Uy=U.(0) and hp=_2mpt/p,Cp. If we integrate
U. = h with h(0) =0, we obtain

cos [tan"(Uo/\/hDg) - t/\/hD/g}
cos[tan—'(Uy/+/hpg)] '
The initial hoop velocity is related to @, and 6. We found

experimentally that U, =~ 0.232(Y/ oY 2t6/R*.  The
maximum height of the hoop jump under the effect of

h(t) = hp In (6)

air drag, H,, 1is obtained by substituting = tnax
= /hp/gtan~'(Uy/+/hpg), which makes Utmax)=0.
From Eq. (6) we have

m:—%wmﬁmﬂmw¢@y )

where ¢ = (h./hp)(z*6*/R*). We note that the maximum
value of the ratio H,/hp depends only on the single parame-
ter ¢, which can be shown to be ¢ ~Dy/mg, where
D() = CDpaRWU(Z).

Figure 5(a) shows that the model can accurately predict
the time dependence of the hoop height. Figure 5(b) shows
that the model collapses all the experimental data for the
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Fig. 5. (Color online) (a) Measured temporal evolution of the height of the hoop with radius R = 15 mm, thickness 7 = 125 um, and initial deflection 6 =9 mm
(circles) compared to the theories without (dashed line) and with (solid line) air drag. (b) Dimensionless maximum jump height versus ¢. The solid line is
from Eq. (7) and the broken line is drawn by taking Cp — 0 in Eq. (7). (c) The energy conversion ratio from E, o to E, (solid line) and to £, (dashed line). Char-

acteristic error bars are shown in the lower right corner of (a) and (b).

maximum height onto a single line with the single parameter
¢. The energy loss due to air drag is E; = mg(Ho—H,), where
Hj is the maximum jump height with no air drag. We substi-
tute E,o of Eq. (1) and U.0) ~ 0.232(Y/p)"?t5/R? into
Ho=E,o/mg and find Hy ~ 0.026h.7°6*/R", which can also
be derived by taking Cp—O0 in Eq. (7) because
In|cos [tan™! (0.232\/@)% 0.026¢ for ¢ < 1.

We plot the ratio E,/E, o= 1-H,/Hy and E,/E, o= H,/H,
versus ¢ in Fig. 5(c). The increase of E,/E,, and the
decrease of E,/E,, with ¢ is reasonable because ¢ corre-
sponds to the ratio of the drag to the weight.

V. OPTIMIZATION OF THE HOOP GEOMETRY

We now turn to the optimization of the hoop design and
the degree of deformation to maximize H, in air for a given
mass of hoop material. Thanks to the simple relation for H,,
in Eq. (7), the optimization is reduced to a simple algebraic
problem. We can show that H, in Eq. (7) depends only on
two parameters, t/R and J, when Y, w, and m = 2npRwt are
fixed. Because 0H,/9(t/R)ls >0 and 0H,/ 99|, /g > 0, maxi-
mizing both 7/R and J given various constraints maximizes
H,. We choose three constraints. The first constraint is
given by the hoop geometry 6 <2R—t, which can be
expressed as

o< ™) (2

where Rt is fixed. To prevent the yield,'” or plastic deforma-
tion, of the material, we choose the second constraint as o,y
<o,, where the maximum stress in the hoop Opnax
= F[6 + 38(h/a)*]/(rawR), which occurs at the intersection of
the inner circumference and the line of action of compressive
load," and o, is the yield stress. Then  can be written as

n oyVRT (R>7/2 a
L2y 3+19(b/a)’’

®)

€)

T

where a=141/2R and b=1—1 /2R. Because a device
that bends the hoop, for example, the leg muscle of an insect
or an actuator of a robot, can exert a finite force F' < Fpax,
the third constraint is given by

Fmax

6 < ——mx 10
<0.56YW(7:/R)3 {10
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Fig. 6. (Color online) Maximum jump height H,, in air versus t/R predicted
by Eq. (7) corresponding to the conditions of Egs. (8) (solid line), (9)
(dashed line), and (10) (alternate long and short dashed line). All three con-
ditions are satisfied in the hatched area. The filled circles represent experi-
mental results. (a) Steel hoops. Inset: Magnified view around the optimum.
(b) Polyimide hoops. Point A: initially the upper segment of a hoop touches
the lower one, but the compressive force is lower than the maximum allow-
able actuator force F,,x. Point B: initially the hoop bends until its upper seg-
ment touches the lower one, at which point the compressive force reaches
Fax. Point C: the hoop is compressed with the maximum allowable actuator
force Fpax, but the upper segment does not touch the lower one. Characteris-
tic error bars are shown in the upper right corner.
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Because all three constraints give the maximum allowable
as functions of t/R, a single parameter 7/R can be tuned to
optimize H, in Eq. (7).

Figure 6 shows examples of the optimization results
using steel and polyimide hoops. We set F,.x = 1.5 and 0.1
N, Rt=6x10"° m? and 2 x 10~® m? for steel and polyi-
mide, respectively, to restrict the jumping height within the
laboratory space. For both cases, Egs. (8) and (10) define
the maximum jump height for varying t/R due to the high
strength of the materials. For the point designated as A in
Figs. 6(a) and 6(b), the hoop can be initially compressed
until its upper segment touches the lower one while still sat-
isfying Egs. (9) and (10). For point C, the hoop can be ini-
tially bent up to a point where the compressive force
reaches F... Point B, where the conditions (8) and (10)
coincide, gives the maximum jump height and thus the opti-
mal value of 7/R. Figure 6 also shows that our experiments
agree well with theory.

VI. CONCLUSIONS

The jumps of an elastic hoop were analyzed by a combi-
nation of experiment and theory. A remarkable result is that
a constant percentage (57%) of the initial elastic strain
energy, independent of the thickness, radius, initial deflec-
tion, and material properties of the hoop, is used to raise the
hoop, provided that t/R < 0.5 and the initial gravitational
sagging is ignored. If we consider the effects of drag, we
find that the maximum jump ratio H/hp, is a function of the
single parameter ¢ [see Eq. (7)], which corresponds to the
ratio of the initial air drag to the weight. For a given hoop
mass the condition for achieving the maximum jump height
is determined by the single parameter 7/R, the ratio of the
thickness to the radius of a hoop. We used a constant
value of the drag coefficient Cp=2.32 for a fixed hoop
width w, which is verified experimentally to be valid for
7/R <0.04. For thicker hoops, Cp was observed to
decrease, which results in a greater jump height than pre-
dicted. The optimal value of t/R is not affected by the
value of Cp.

Our theory for the dynamics of the model jumper enables
us to treat the jump of various other geometries such as slen-
der beams and hollow shells. A topic of biophysical interest
is the shape and dimension of a semilunar process, consisting
of chitin fibers in a protein matrix,?* which is responsible for
storing elastic energy in the legs of jumping insects such as a
locust,*® to see whether it has evolved to maximize the jump-
ing efficiency. Also the jumps of various objects on a flexible
substrate, which will dissipate more than 7% of the initial
elastic strain energy for a rigid substrate, is of interest for
understanding insect jumps on plant leaves and on
water.>**

23 Am. J. Phys., Vol. 80, No. 1, January 2012

ACKNOWLEDGMENTS

This work was supported by the National Research
Foundation of Korea (Grant Nos. 2009-0082824 and 2010-
0029613), and administered via SNU-IAMD. We are grate-
ful to Professor L. Mahadevan for stimulating discussions.

“Electronic address: hyk@snu.ac kr
"M. Burrows, “Froghopper insects leap to new heights,” Nature (London)
424, 509 (2003).

>M. Burrows and O. Morris, “Jumping and kicking in bush crickets,”
J. Exp. Biol. 206, 1035-1049 (2003).

*H. C. Bennet-Clark and E. C. A. Lucey, “The jump of the flea: A study of the
energetics and a model of the mechanism,” J. Exp. Biol. 47, 59-76 (1967).

“H. C. Bennet-Clark, “The energetics of the jump of the locust Schistocerca
gregaria,” J. Exp. Biol. 63, 53-83 (1975).

D.-G. Lee and H.-Y. Kim, “Impact of a superhydrophobic sphere onto
water,” Langmuir 24, 142-145 (2008).

°D. L. Hu and J. W. M. Bush, “The hydrodynamics of water-walking
arthropods,” J. Fluid Mech. 644, 5-33 (2010).

7Y. Sugiyama and S. Hirai, “Crawling and jumping by a deformable robot,”
Int. J. Robot. Res. 25, 603-620 (2006).

8B. Shin, H.-Y. Kim, and K.-J. Cho, “Towards a Biologically Inspired Small-
Scale Water Jumping Robot,” in /EEE International Conference Biomedical
Robotics Biomechatronics (Scottsdale, AZ, 2008), pp. 127-131.

M. Rothschild, J. Schlein, K. Parker, C. Neville, and S. Sternberg, “The
jumping mechanism of Xenopsylla Cheopis 11I. Execution of jump and
activity,” Philos. Trans. R. Soc. London, Ser. B 271, 499-515 (1975).

"9W. J. Heitler, “The locust jump. Specialisations of the metathoracic
femoral-tibial joint,” J. Comp. Physiol. 89, 93—104 (1974).

""M. Burrows, “Morphology and action of the hind leg joints controlling
jumping in froghopper insects,” J. Exp. Biol. 209, 4622-4637 (2006).

'2G. P. Sutton and M. Burrows, “Biomechanics of jumping in the flea,”
J. Exp. Biol. 214, 836-847 (2011).

M. Burrows and H. Wolf, “Jumping and kicking in the false stick insect
Prosarthria teretrirostris: Kinematics and motor control,” J. Exp. Biol.
205, 1519-1530 (2002).

M. E. G. Evans, “The jump of the click beetle (Coleoptera, Elateridae)—a
preliminary study,” J. Zool. 167, 319-336 (1972).

SA. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, 4th
ed. (Dover, New York, 1927).

'R. Hoppe, “The bending vibration of a circular ring,” Crelle J. Math. 73,
158-170 (1871).

'7J. L. Lin and W. Soedel, “On general in-plane vibrations of rotating thick
and thin rings,” J. Sound Vib. 122, 547-570 (1988).

'%P. S. Raux, P. M. Reis, J. W. M. Bush, and C. Clanet, “Rolling ribbons,”
Phys. Rev. Lett. 105, 044301 (2010).

“D. W. Hobbs, “An assessment of a technique for determining the tensile
strength of rock,” Brit. J. Appl. Phys. 16, 259-268 (1965).

20y, Kirkhope, “In-plane vibration of a thick circular ring,” J. Sound Vib. 50,
219-227 (1977).

21G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge U. P.,
Cambridge, 1967).

22p_R. Shewry, A. S. Tatham, and A. Bailey, Elastomeric Proteins (Cam-
bridge U. P., Cambridge, 2003).

M. Burrows and G. Morris, “The kinematics and neural control of high-speed
kicking movements in the locust,” J. Exp. Biol. 204, 3471-3481 (2001).

247, Brackenbury and H. Hunt, “Jumping in springtails: Mechanism and
dynamics,” J. Zool. 229, 217-236 (1993).

E. Yang and H.-Y. Kim 23


http://dx.doi.org/10.1038/424509a
http://dx.doi.org/10.1242/jeb.00214
http://dx.doi.org/10.1021/la702437c
http://dx.doi.org/10.1017/S0022112009992205
http://dx.doi.org/10.1177/0278364906065386
http://dx.doi.org/10.1098/rstb.1975.0064
http://dx.doi.org/10.1007/BF00696166
http://dx.doi.org/10.1242/jeb.02554
http://dx.doi.org/10.1242/jeb.052399
http://dx.doi.org/10.1111/j.1469-7998.1972.tb03115.x
http://dx.doi.org/10.1515/crll.1871.73.158
http://dx.doi.org/10.1016/S0022-460X(88)80101-9
http://dx.doi.org/10.1103/PhysRevLett.105.044301
http://dx.doi.org/10.1088/0508-3443/16/2/319
http://dx.doi.org/10.1016/0022-460X(77)90356-X
http://dx.doi.org/10.1111/j.1469-7998.1993.tb02632.x

	ajpcov.jpg
	jumping_hoops.pdf
	s1
	s2
	s3
	E1
	E2
	F1
	F2
	E3
	s4
	E4
	E5
	E6
	E7
	F3
	F4
	s5
	E8
	E9
	E10
	F6
	F5
	s6
	cor1
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	B21
	B22
	B23
	B24


