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bstract

This work investigates the mechanics of microcantilever deflection due to growth of a vapor microbubble. We construct a theoretical model to

redict the elastic beam deflection due to the capillary pressure developed by the bubble growing between the beam and a substrate. The theory is
n good agreement with our experimental results in both macro- and micro-scales. The deflection of a thin-solid structure due to growing bubbles
an be used in such micromachines as microactuators, microgenerators and micropumps, which are operated as immersed in liquid.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Development of MEMS (MicroElectroMechanical Systems)
echnology has realized various microactuation techniques
sing electrostatics [1], piezoelectricity [2], bimetals [3], shape
emory effects [4], etc. Among these actuation technologies,

ctuation of solid structures using microbubbles is of a par-
icular interest because it can be used when moving parts are
ully immersed in liquid. Lin et al. [5] deflected a microcan-
ilever beam with a thermal bubble generated by a microheater.
ergstrom et al. [6] vaporized liquid in a cavity to increase the

nterior pressure and thus to deflect the cavity wall. Based on
he similar principle, Xu et al. [7] proposed a micro power
enerator in which piezoelectric membrane was deflected by
aporization of liquid contained in a cavity. In addition to ther-
al bubbles, bubbles generated by electrolysis [8] have been

sed in microfluidic devices, including actuators of a microvalve
9] and a biological cell sorting switch [10].

In those applications relying on the interaction of microbeam
r membrane with microbubbles generated either thermally
r electrochemically, understanding the mechanics of solid

eflection due to bubble is essential for design of devices and
valuation of their performance. Therefore, the aim of this work
s to provide a theoretical explanation on the deflection of micro-
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antilever beam due to growing microbubble. The deflection
s driven by the capillary pressure inside the bubble that is
igher than the surrounding liquid, being an interesting example
f “elastocapillary” interactions. The deflection of a thin-solid
tructure due to capillary force was addressed by Kim and

ahadevan [11] in the context of the surface-tension-driven ver-
ical rise of a liquid between two long hydrophilic sheets, i.e.

odified Jurin’s problem [12]. In this case, the pressure inside
he liquid is lower than the atmospheric pressure, thus the sheets
re bent inward to squeeze the liquid into the gap between them.
owever, for the current problem considered in this work, the
ubble pressure is higher than the surrounding pressure and the
olid structure is pushed away from the bubble. In the following,
e construct a model for the elastic response of the cantilever
eam due to the pressure of microbubble determined by the sur-
ace tension and the contact angle. To verify the modeling, we
erform experiments to measure the deflection of a cantilever
sing a thermal bubble and compare the results with the theory.

. Theory of beam deflection

We consider a thin-solid beam that consists of a narrow arm
nd a wide end plate, as shown in Fig. 1. It is clamped at one end

nd the other end, i.e. the end plate, interacts with the bubble thus
as a large area. Fig. 2 shows the recorded images of a thermal
ubble deflecting a cantilever beam. Upon the bubble touching
he beam, its contact area with the solid increases accompanying

mailto:hyk@snu.ac.kr
dx.doi.org/10.1016/j.sna.2007.01.004
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Fig. 1. Shape and dimension of a cantilever beam. (a) Top view. (b) Side view.

pward deflection of the beam. The deflection continues until
he bubble finally escapes into unbounded region. As the bubble
isappears, the beam springs back to an original position and
eets a newly formed bubble. Therefore, the deflection process

s repeated at a constant frequency. Our focus here is to predict
he amount of beam deflection as a function of bubble size and
he initial distance between the substrate and the beam.

Rigorously, the end-plate experiences distributed force by
ressure difference between inside and outside of the bubble.
owever, we simplify the load as concentrated force F acting

t a point, x = c, in the end plate. Assuming a small deflection
ompared with the length, we use a linear theory of elasticity to
escribe the deformation of the cantilever. Then the shape of the
antilever y(x) satisfies [13]

d2
(

EI
d2y
)

= F 〈x − c〉−1, (1)

dx2 dx2

here E is the solid’s modulus of elasticity, I(x) the second
oment of area of the beam, c the location of the point load,

ig. 2. Sequential images of a growing vapor bubble and a deforming cantilever
eam.
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nd 〈·〉−1 is the unit impulse function. Integrating Eq. (1) four
imes gives the cantilever deflection y(x). The beam is clamped
t the end x = 0 so that y(0) = 0 and y′(0) = 0. At the other
nd, x = L, we assume no bending moment and shear force,
hus y′′(0) = y′′′(0) = 0. These four boundary conditions must be
upplemented by matching conditions at x = a given by the con-
inuity of the deflection and the slope: y(a − ε) = y(a + ε) and
′(a − ε) = y′(a + ε) as ε → 0. Finally using the global force and
orque balances, we can obtain the closed-form expression for
(x):

= F

EI1

(
−x3

6
+ c

2
x2
)

, for 0 < x < a

= F

EI2

[
1

6
〈c − x〉3 + A(L − x) + B

]
, for a < x < L

here I1 and I2 are the second moments of area of the
rm and the end plate, respectively 〈c − x〉3 = 0 for x > c and
c − x〉3 = (c − x)3 for x < c. The coefficients A and B are given
y

= I2

I1
a
(a

2
− c
)

− 1

2
(b − d)2,

= I2

I1
a

(
ac

2
− a2

6
− ab

2
+ bc

)
+ (b − d)2

(
d

6
+ b

3

)
,

here the lengths a, b, c and d are as indicated in Fig. 1. The tip
eflection at the free end x = L is δL = FB/EI2. The deflection δc

t the point where the load is applied, x = c, is given by

c = F (Ad + B)

EI2
. (2)

n a case the force acts at the center of the end plate, c = b/2, δc

ecomes identical to the result of Ref. [5].
Now we assume that the cantilever velocity is low enough for

ts inertial and drag force to be negligible and that the hydrostatic
ressure difference between the top and bottom of the bubble is
uch smaller than the capillary pressure. Then the deflection

orce of the cantilever and the force due to interior pressure
2
f the bubble are balanced to yield F = �PπR , where �P is

he pressure difference across the bubble interface and R is the
ontact radius of the bubble and the plate. Fig. 3 shows the
chematic of the deflecting beam due to a growing bubble. By

Fig. 3. A schematic of the deflected beam due to a growing bubble.
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he Young–Laplace equation, we write

P = σ

(
1

r
+ 1

R

)
, (3)

here σ is the surface tension and r is the average curvature of
ubble meniscus as shown from the side, which will be mathe-
atically defined later in Eq. (5). The local curvature of bubble
eniscus near the contact lines as shown from the side, 1/ri, is

etermined by the contact angle θi and the spacing between the
ubstrate and the beam h + δ, where h being the distance between
he substrate and the clamped end prior to deflection and δ is the
eflection:

1

ri
= 2 cos θi

h + δ
. (4)

lthough δ varies with the location of meniscus, here we simply
ake δ = δc. The error of ri due to this simplification is negligible
s long as (δc/h)(b/2a) � 1, that is, when the deflection is small
s compared with the clamped height and the end plate is short as
ompared with the arm. Assuming a general situation where the
ontact angles at the four corners are not identical, we average
he curvature to obtain the average pressure inside the bubble.
herefore, we use

1

r
= 2s

h + δ
, (5)

here s is the averaged cosine of the contact angles, s =
1/4)

∑4
i=1 cos θi. Combining Eqs. (2) and (3) we can obtain

force balance equation:

δ = πR2σ

[
2s

h + δ
+ 1

R

]
, (6)

here k = EI2/(Ad + B). Solving Eq. (6) for δ yields

= 1
2 {(ηR − h) + [(ηR − h)2 + 4ηR(2Rs + h)]

1/2}, (7)

here η = πσ/k. As Eq. (7) indicates, once the material and
imensions of a cantilever, i.e. k, η and h, are given, its deflec-
ion is determined by the bubble contact radius R and the contact
ngles. The equilibrium contact angle values are uniquely given
hen the solid/gas/liquid combinations are determined. How-

ver, for a bubble under compression as considered here, the
ontact angle values tend to be smaller than the equilibrium val-
es because the contact lines recede. If the evolutions of R and θi

ith time are known, we can explicitly determine the temporal
volution of δ(t). This involves the consideration of the energy
onservation for the bubble’s phase change and the dynamics of
ontact line, both of which fall beyond the scope of the current
tudy.

It is possible to determine theoretically the maximum deflec-
ion of a given cantilever using Eq. (7). The bubble cannot grow

arger than the end plate, thus the maximum of R is b/2. Also
ssuming that the bubble remains underneath the cantilever until
he receding contact angles reach zero, whose validity is to be
xperimentally examined below, the maximum deflection theo-
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etically allowable, Δmax, is

max = 1

2

⎧⎨
⎩
(

ηb

2
− h

)
+
[(

ηb

2
− h

)2

+ 2ηb(b + h)

]1/2
⎫⎬
⎭ ,

(8)

where we put c = a + b/2 and d = b/2 in evaluating k to get η. If
bubble radius grows only up to Rmax < b/2 before escaping to

he unbounded region, the maximum deflection δmax is given by

max = 1
2 {(ηRmax − h)

+[(ηRmax − h)2 + 4ηRmax(2Rmaxs + h)]
1/2}, (9)

where we put d = Rmax. In this section, we have presented the the-
retical prediction of the cantilever deflection due to a growing
ubble, Eq. (7), and the maximum deflection before the bubble’s
scape, Eqs. (8) and (9). In the following, we compare our theory
ith experiments.

. Experimental results

To verify our theoretical model, we performed a simple
xperiment to measure the cantilever deflection due to grow-
ng thermal bubble. In the experiment, the cantilever was made
f 50 �m-thick stainless steel with a = 9.6 mm and b = 5.2 mm.
hermal bubbles were formed using a nichrome heater housed

n a Teflon block covered with a silver tape having a 400 �m-
iameter hole through which bubbles were released. The liquid
sed for this experiment was water and contained in a trans-
arent acrylic tank for optical measurement. The bubble growth
nd consequent beam deflection were observed through the side
f the tank via a high-speed CCD camera, giving rise to the
ime series illustrated in Fig. 2. An image analysis software
Microsoft Photoeditor) was then used to determine the bubble
ize and beam deflection.

Fig. 4 shows the temporal evolution of the beam deflection
nd the bubble-beam contact radius. The contact area increases
or the initial 0.4 s or so then the bubble reaches the free end of
he beam, which limits the growth of the contact area. However,
he beam continues to grow even after the contact area stops
ncreasing, implying that the bubble’s interior pressure increases
wing to the decrease of the radius r or the contact angles. After
he maximum beam deflection is achieved at about 0.8 s, the
ubble escapes, leading to the rapid spring-back of the beam.

Fig. 5 compares the theoretical estimation of the beam, Eq.
7), with the beam deflection as the bubble-beam contact radius
s given. We used various average cosine values of the contact
ngles, to find that when s = cos 60◦ is used, the theory matches
he experimental results until the bubble touches the free end of
he beam (from 0 to 0.4 s). Considering that the static contact
ngles of water with the substrate (silver tape) and the beam
ere measured in this work to be, respectively, 40◦ and 83◦,

t turns out that the average contact angle of the two values

esult in fairly good agreement between theory and experiment.
fter the bubble touches the beam free end, the contact angle

hould decrease following the increase of the bubble curvature.
herefore, from t = 0.4 to 0.8 s, the theory matches the exper-
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Fig. 5. Comparison of the experimental results (circles) with the theoretical
p
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culate the maximum beam deflection. As working liquids, we
selected water (σ = 0.072 N/m) and an insulating liquid FC-72
(σ = 0.012 N/m). Our calculation results show that the beam
deflection sensitively increases as the end-plate size increases

Fig. 6. Effects of the beam dimensions and liquid surface tension on the
maximum beam deflection possible, Δ . The solid lines and broken lines
ig. 4. Measurement results for the temporal evolution of (a) the deflection of
he plate center and (b) the radius of the bubble/plate contact area.

ment when gradually smaller values of θ are used. We find
hat the maximum deflection is achieved when the contact angle
ecomes zero (t = 0.8 s), validating the foregoing assumption
eading to Eq. (8).

To further verify our theory, we fabricated various dimen-
ions of silicon (E = 190 GPa) microcantilevers using the bulk
icromachining technology [14] and measured their maximum

eflection due to growing thermal bubbles formed on platinum
icroheaters. For the measurement, we used the same optical

echnique as explained above. Table 1 compares the experimen-
al results and theoretical predictions of each beam’s maximum
eflection corresponding to the measured maximum radius of the

ubble-beam contact area. It shows excellent agreement between
he theory and the microscale experiments.

Upon validating our model, it is now possible to investigate
ow the physical properties and the dimensions of the microac-

c
r
1
a

redictions (solid lines). For theoretical predictions, we used different values of
, and θ increases in the direction of the arrow taking the values 0◦, 30◦, 45◦,
nd 60◦.

uation system affect the maximum deflection achievable. Fig. 6
hows the effects of the end-plate size, b, the beam thickness,
, and the liquid surface tension on the maximum deflection

max of a single-crystal silicon beam. We used Eq. (8) to cal-
max

orrespond to the calculation results using water and FC-72 as working liquids,
espectively. The line labels A, B, and C designate the beam thickness of 7.5,
0, and 15 �m, respectively, for each liquid. The arm length a, the arm width e
nd the initial beam height h were fixed at 800, 50, and 10 �m, respectively.
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Table 1
Comparison of the theory and experiments for maximum beam deflections of microscale silicon beams

Exp. No. t a b e h Rmax Theoretical δmax Measured δmax

1 10.3 4040 960 260 199 389 203 195
2 16.5 4040 960 260 233 294 40 42
3 14.4 3040 960 260 222 342 38 38
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14.4 3040 460 260
16.5 2040 960 260

ll the dimensions are in micrometers.

ecause it increases both the pressure-acting area and the length
f moment arm. The decrease of the beam thickness increases
he deflection since it decreases the second moment of area.
sing a liquid with a high surface tension increases the beam
eflection owing to an increased pressure difference given by the
oung–Laplace equation. Although not shown here, the effect
f the gap height h on the maximum deflection is relatively weak
ince it determines the bubble radius together with δ.

We finally note that the deflection of the beam should be
imited so that the maximum stress occurring at the clamped
nd does not exceed the yield stress. For a thin beam, the bend-
ng stress, τb, is dominant over the shear stress and it is given
y τb = 6Fc/et2. In the case of a silicon beam of Fig. 6, the
aximum bending stress reaches 330 MPa, when t = 7.5 �m and
= 400 �m. This is an order of magnitude smaller than the yield

tress of silicon, 7 GPa.

. Conclusions

In summary, we constructed a theoretical model to predict the
antilever beam deflection due to a bubble growing between the
ubble and the substrate. The model considers the positive inte-
ior pressure of the bubble using the Young–Laplace equation,
nd the deflection is calculated by a linear theory of elasticity.
he theoretical predictions are shown to agree fairly well with
xperimental measurements.

This study can be applied to design an optimal microac-
uation system where cantilever beams are deflected by vapor
ubbles. Although this work provides a theory to calculate the
eam deflection as a function of the bubble size and to pre-
ict the maximum deflection which is determined by the beam
eometry, further study can be pursued to address the growth
rocess of the bubble due to external inputs. For example, ther-
al bubble growth is governed by a microheater power and the

lectrochemical bubble can be grown by external voltage inputs.
he coupling of the bubble formation process with the beam
eflection model will enable the control of the beam deflection
sing the external inputs. In addition to serving such practi-
al applications, this problem provides one interesting example
f elastocapillary theory which solves the deformation of the
hin-solid structures due to surface tension effects.
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