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A dense solid sphere gently released on an air-liquid interface slowly sinks into liquid due to

gravity, while the motion is resisted by viscous and capillary forces. Here, we predict the sinking

velocity of the interface-straddling sphere by a simplified model and experimentally corroborate

the results. The viscous drag on the sphere is determined by integrating the surface stress, which is

the solution of the Stokes equation, over the wetted area that changes with time. To compute the

interfacial tension force that depends on the meniscus profile, we solve the dynamic boundary

condition for the normal and tangential stresses at the air-liquid interface. The predicted sinking

velocity, a function of the sphere density and radius, liquid density, viscosity and surface tension,

and the dynamic contact angle, is in good agreement with the experimental measurements except

for the late stages when meniscus snapping occurs. We also construct a scaling law for the steady

velocity of a sinking sphere, which gives the characteristic sinking time. VC 2011 American Institute
of Physics. [doi:10.1063/1.3614536]

I. INTRODUCTION

A completely immersed solid sphere that is denser than

the surrounding liquid falls due to gravity and its steady veloc-

ity is determined by the balance of the negative buoyant force

with the drag. When the Reynolds number defined as

Re ¼ qf Ua=l� 1, where U is the sphere velocity, a the

sphere radius, and qf and l the liquid’s density and viscosity,

respectively, the drag FD ¼ 6plUa, then the terminal velocity

is simply given by Ut ¼ 2
9
ðqs � qf Þa2g=l, where qs is the

solid density and g the gravitational acceleration. Now, we

consider a tiny dense solid sphere initially released upon the

liquid’s free surface. For the partially submerged solid object,

the interfacial tension in addition to the hydrostatic pressure

and viscous stresses exerts force on the object, whose direc-

tion is determined by the contact angle and the object eleva-

tion with respect to the unperturbed free surface, h.1,2

Although how small (even flexible) objects can float in

equilibrium at an interface is well understood now,3,4 the

question of how an object sinks if the subtle balance of forces

is upset has drawn scientific interests only recently. This can

happen if the solid weight exceeds the vertical force, which

surface tension and hydrostatic pressure provide, due to the

increased solid density or wettability or to the reduced interfa-

cial tension. In addition to our mundane observations of flour

of salt and sugar falling into water when cooking, this problem

has implications in an industrial mineral-separation process

called flotation.5 In the world of tiny aquatic arthropods such

as water striders6 and fishing spiders7 and insects captured by

carnivorous pitcher plants,8 to drown or not is a matter of life

and death. Motivated by a water strider leg being drowned on

surfactant-added water, Vella et al.9 considered the sinking of

a dense cylinder as it is gently placed on the air-water inter-

face. The liquid flow was assumed to be potential due to the

high Reynolds number, the meniscus shape was obtained by

solving the two-dimensional Young-Laplace equation, and the

pressure around the cylinder was taken to be hydrostatic.

Vella and Li10 studied the impulsive motion of a small cylin-

der floating horizontally at the liquid-gas interface, suggesting

that the influence of contact line may be important in the tran-

sition from floating to sinking. Duez et al.11 showed that the

water repellency plays an important role in making an air cav-

ity upon impact of a sphere and gave conditions of the impact

velocity and contact angle for the air cavity to form. Aristoff

and Bush12 investigated the water entry dynamics of small

hydrophobic spheres with a major focus on understanding the

inviscid collapse dynamics of cavity made by an impactor.

Lee and Kim13 showed that a tiny superhydrophobic sphere

impacting on water may penetrate, bounce off, or oscillate on

the free surface depending on the impact conditions, i.e., the

relative magnitude of impact inertia to surface tension.

An object that sinks into a liquid eventually gets fully

immersed, at which instant the object loses its contact with

the meniscus. Such physical process of the meniscus detach-

ment is commonly observed in a classical mineral separation

process14 and in biological locomotion of aquatic animals.6

The interface failure problem was studied in various contexts

including the breakup of the liquid film with a hole,15 the

failure of a liquid bridge between plates that move apart

from each other,16 and the disengagement of a horizontal

cylinder that is lifted off a liquid surface.17 A common obser-

vation is that the liquid interface becomes unstable near the

detachment leading to a sudden burst, so that the theoreti-

cally computed meniscus profile abruptly stops matching

experiment.18,19

To obtain a basic understanding of the dynamics of par-

tially submerged sinking sphere, we begin with dimensional

analysis. When a solid sphere sinks into an air-liquid inter-

face, the liquid exerts various forces on the sphere arising

from the hydrodynamic (� qf
_h2a2) and hydrostatic

(� qf gha2) pressure, added inertia (� qf
€ha3), viscous
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(� l _ha), and surface tension (� ca) effects, where
_h ¼ dh=dt with t being time and c is the surface tension.

Dimensional analysis leads to the following relationship:

h

lc
¼ f ðs; D;Bo;Ca;Re; hÞ; (1)

where the capillary length lc ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
c=qf g

q
, the nondimensional

time s ¼ tc=ðlaÞ, the density ratio D ¼ qs=qf , the Bond

number Bo ¼ qf ga2=c, the Capillary number Ca ¼ lU=c,

the Reynolds number Re ¼ qf Ua=l, and h is the dynamic

contact angle. Unlike the fully immersed sphere of which

behavior is determined by D and Re only, the motion of a

partially submersed sphere additionally depends on the pa-

rameters related to wetting. Here, we are interested in pre-

dicting the velocity of a small solid sphere straddling a

liquid-gas interface corresponding to Re� 1 and Bo� 1

and corroborate the theoretical results experimentally.

II. THEORETICAL FORMULATION AND EXPERIMENTS

A. Hydrodynamic model

We consider a solid sphere sinking with a velocity

U ¼ � _h, where h denotes the elevation of the sphere’s center

with respect to the unperturbed free surface through a vis-

cous liquid as shown in Fig. 1. When Re� 1 and Bo� 1,

the added inertia and the form drag are negligibly small com-

pared to the viscous force, while the buoyancy can be

neglected compared to the surface tension force only when

h � a. Thus, the equation of motion of the solid sphere is

written as

4

3
pa3qs

€h ¼ Fd þ Fb þ Fs � Fw; (2)

where Fd is the viscous drag, Fb the buoyancy, Fs the surface

tension force, and Fw the solid weight.

To determine Fd and Fb, we need to solve the flow field

around the sphere and determine the location and shape of

the meniscus. To enable the analytical formulation of this

problem instead of numerically solving the flow field with a

deforming meniscus, we start with a classical solution of

Stokes,20 which is strictly valid for the sinking of a com-

pletely immersed sphere surrounded by a liquid of infinite

extent. Since Re� 1, the flow induced by a sinking sphere

is inertia free, so that the stream function w satisfies

D2ðD2wÞ ¼ 0, where

D2 � @2

@r2
þ sin u

r2

@

@u
1

sin u
@

@u

� �
: (3)

Here, w is such that ur ¼ ð@w=@uÞ=ðr2 sin uÞ and

uu ¼ �ð@w=@rÞ=ðr sin uÞ, where u is the velocity in the

direction designated by its subscript and (r;u;x) is a spherical

coordinate system as shown in Fig. 2. For a flow around a fall-

ing sphere, the stream function is given by w ¼ � 1
4

_ha2ða=r
�3r=aÞ sin2 u. Then, we get ur ¼ _hð� 1

2
a3=r3 þ 3

2
a=rÞ cos u

and uu ¼ � _hð1
4

a3=r3 þ 3
4

a=rÞ sin u. Substituting these veloc-

ity components into the following Stokes equations:

@p

@r
¼l r2ur�

2ur

r2
� 2

r2

@uu

@u
�2uu cotu

r2

� �
�qf g cos u;

1

r

@p

@u
¼ l r2uuþ

2

r2

@ur

@u
� uu

r2 sin2 u

� �
þqf g sin u;

(4)

subject to the condition p ¼ pa � qgy as r !1 yields a

pressure distribution around the sinking sphere as

pðr;uÞ ¼ pa þ
3la _h cos u

2r2
� qf gy; (5)

where pa is the atmospheric pressure and y ¼ hþ r cos u.

Now, we assume that the real flow field in the liquid around

the sinking sphere, which is partially exposed to air, is not

changed substantially from the foregoing theoretical field.

FIG. 1. Images of spheres with the radius 0.75 mm sinking vertically through the surfaces of (a) glycerine and (b) silicone oil. (a) Re¼ 0.011, D¼ 11.0, and

Bo¼ 0.11. (b) Re¼ 0.038, D¼ 14.9, and Bo¼ 0.25. The horizontal arrows indicate the elevation of the undisturbed free surface.

FIG. 2. Geometry of a sphere straddling the gas-liquid interface.
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Figure 3 compares the velocity field obtained by a particle

image velocimetry (PIV) experiment and the theoretical

field. Except that the velocity normal to the interface is zero

in reality, the theoretically approximated velocity vectors

appear to closely simulate the experimental measurements.

The pressure on the wet surface of the sphere, where

r¼ a and p� b < u < p, is then given by

pða;uÞ ¼ pa þ
3l _h cos u

2a
� qf gðhþ a cos uÞ: (6)

Now, we can calculate the vertical component of the pres-

sure force acting on the sphere by integrating the pressure

over the wet area,

Fp ¼ �
ðp

p�b
pa2ðp� paÞ sinð2uÞdu

¼ pl _haAðbÞ þ 2pa2qf gBðbÞ;
(7)

where AðbÞ ¼ cos3 b� 1 and BðbÞ ¼ 1
2

hðcos2 b� 1Þ
þ 1

3
að1� cos3 bÞ. The first term on the right-hand side of

Eq. (7) corresponds to the hydrodynamic pressure force, and

the second term the buoyancy Fb. Integrating the vertical

component of shear stresses over the solid surface area in

contact with liquid gives the viscous force Fl as

Fl ¼ �
ðp

p�b
2pa2sru sin2 udu

¼ pl _hað�2þ 3 cos b� cos3 bÞ:
(8)

The total force due to liquid flow can be recombined as

Fp þ Fl ¼ Fd þ Fb, so that the force of the viscous origin Fd

and the buoyancy Fb is, respectively, given by

Fd ¼ Fl þ pl _haAðbÞ (9)

and

Fb ¼ 2pa2qf gBðbÞ: (10)

We note that when b ¼ p, corresponding to the fully

immersed sphere, Fd becomes the classical Stokes drag:

Fd ¼ 6plUa.

The vertical component of the surface tension force Fs

that acts tangent to the interface along the contact line is

given by

Fs ¼ 2pac sin b sin /0; (11)

where the slope of the meniscus at the contact line

/0 ¼ hþ b� p. Substituting those forces and Fw ¼ 4
3
pa3qsg

into Eq. (2) gives a second-order differential equation for h
once the values of h and b are determined. In general, the

dynamic contact angle h is dependent on the combination of

three phases of liquid-solid-gas and the sinking velocity. An

extent of sphere submersion, bðtÞ, can be obtained only after

the interface profile is theoretically determined with time. In

the following, we find a relationship between h and b by

solving the meniscus shape at low Re.

B. Interface profile at low Reynolds numbers

A balance of stresses at the boundary of two fluids can

be expressed as21

eijtinj ¼ 0 (12)

in the tangential and

j ¼ pa � p

c
þ 2l

c
eijninj (13)

in the normal direction to the boundary, where eij is the strain

rate tensor, eij ¼ 1
2
ð@ui=@xj þ @uj=@xiÞ, and n and t are the

normal and tangential unit vectors, respectively. The curva-

ture at a given point of the interface, j ¼ cos /ðd/=dxÞ
þ sin /=x in the axisymmetric fluid interface. We expand

Eq. (12) as ðerrnr þ erunuÞnu ¼ ðerunrþ euunuÞnr using the

relations tr ¼ �nu ¼ sinð/þ uÞ and tu ¼ nr ¼ cosð/þ uÞ.
In Eq. (13), we write eijninj ¼ ðerrnr þ erunuÞnr þ ðerunr

þeuunuÞnu and use the expanded form of Eq. (12) to get

eijninj ¼ �eru cotð/þ uÞ þ euu; (14)

where eru ¼ 3
4

_ha3r�4 sin u and euu¼ 3
4

_hð�a3r�4þar�2Þ
�cosu. Using the pressure distribution around the meniscus

as given by Eq. (5), Eq. (13) that describes the dynamic me-

niscus profiles becomes

dx

d/
¼ �tan/

x
þ y

l2c cos/
þ 3a3Ca

2r4cos/
sinucotð/þuÞþcosu½ �

� ��1

;

dy

d/
¼tan/

dx

d/
:

(15)
The boundary conditions are such that

x ¼ a sin b and y ¼ h� a cos b at / ¼ /0;

y! 0 and x!1 as /! 0:
(16)

To solve this system, we make an initial guess for b and inte-

grate Eq. (15) to x¼ L, where we require tan /jx¼L < 10�3.

Then, we check whether the following convergence criterion

is met: yðLÞ=lc < 10�3. By repeating this process with a

renewed initial guess for b until the criterion is met, we solve

the interface profile and bðtÞ, which in turn gives us the loca-

tion of the sphere in the next step.

FIG. 3. The velocity field around a sphere with a ¼ 0:75 mm in silicone oil

at t ¼ 0:084 s. The velocity vectors in the domain x < 0 are the empirically

obtained results using particle image velocimetry. The vectors in the region

x > 0 are the solutions of the Stokes equation.
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C. Experiments

We gently released a small but heavy sphere onto the

free surface of a viscous liquid and observed the temporal

evolution of the sphere location and the meniscus shape. We

used tungsten spheres of the radius ranging between 0.4 and

1.0 mm and of the density 15 000 kg m�3. Aqueous 99%

glycerine and silicone oil were used as the viscous liquids,

whose properties (with those of water for comparison) are

listed in Table I. It is noted that the surface tension of glycer-

ine is about three times larger than that of silicone oil,

although its viscosity is only 50% higher than that of silicone

oil, which allows us to efficiently reveal the effects of the

surface tension on the sinking process. Prior to the experi-

ments with glycerine, the spheres were spray-coated with

nitrocellulose lacquer to attain a static contact angle of 92�.
The spheres to sink in silicone oil were ultrasonically

cleaned in acetone and in methanol both for 5 min, and the

static contact angle was measured to be 21�. To minimize

the initial impact speed of the sphere, we released the sphere

that was initially adhered to an electromagnet by turning the

magnet off as the sphere touches the free surface. The mea-

surement of the sphere velocity started as the bottom of the

sphere passed through a blurred region around the free surface

(See Fig. 1). In our experiments, the Reynolds number based

on the initial sinking speed, which also corresponds to the

maximum speed, ranged between 0.02 and 0.07, so that the

creeping flow assumption is satisfied. The sphere location and

the meniscus shape were observed through the side of a trans-

parent acrylic bath (50 mm� 50 mm� 60 mm) via a high

speed camera (Redlake HS-4) recording images at a rate of

500 s�1. Then the images were analyzed to determine the

height of the sphere with respect to the undeformed free sur-

face. For the PIV experiment to visualize liquid flows around

the sinking sphere, the liquid was seeded with hollow glass

spheres with 10 lm and 1100 kg=m3 in diameter and density,

respectively, which were illuminated by a 2-W semiconductor

laser focused into a light sheet approximately 0.3 mm thick.

The same high speed camera as above recorded the motion of

the seeds as well as the sinking sphere.

III. RESULTS AND DISCUSSION

A. Comparison of theory and experiment

Figure 4 compares the experimentally measured tempo-

ral evolution of h of the spheres with a ¼ 0:75 mm to its the-

oretical predictions obtained by solving Eq. (2). We used

experimentally measured dynamic contact angle h in our

theory, so that h¼ 128� for 0 < t < 0:10 s and h¼ 112� for

t > 0:10 s in (a), and h¼ 149� for all t in (b). Line I is the

result of solving b as a function of time via Eq. (15). We

also find b using the Young-Laplace equation that assumes

Ca¼ 0, which gives h(t) as a dashed line II. Lines III and IV

are obtained by neglecting the surface tension force Fs and

the viscous force Fd, respectively, in Eq. (2). In Fig. 4(a),

both the lines I and II agree well with the experimental meas-

urements, whereas only line I matches well with experiment

in (b). The results show that our simplified analytical theory

using Eq. (2) can predict the sinking velocity of a sphere into

a viscous liquid with a high accuracy up to a point where the

calculation ceases for the reason that will be discussed later.

The large deviations of the lines III and IV from the mea-

surement results quantitatively reveal the roles of the surface

tension and the viscosity in the slow sinking of the sphere.

Line V corresponds to the case when the sphere sinks as if

completely immersed in the liquid with the terminal velocity

Ut. We detail the foregoing observations in what follows.

Although the spheres of the identical radius and density

were used and the dynamic contact angles were similar, dif-

ferent liquid properties led to different D and Bo; thus, sig-

nificant difference is noted between the sinking behaviors of

Figs. 4(a) and 4(b). In (a), following the rather rapid initial

descent of the sphere due to a limited contact area with the

TABLE I. Physical properties of the liquids.

Liquid qf (kg=m3) c (mN=m) l (kg=m=s)

Glycerine 1260 63.3 1.54

Silicone oil 968 21.1 1.06

Water 998 72.8 1.0� 10�3

FIG. 4. Comparison between the theoretical predictions and the experimen-

tal results of h versus time: (a) glycerine and (b) silicone oil. Insets show the

maximum density ratio of a sphere that can be supported on each liquid in

equilibrium as a function of Bo (solid line) and the actual experimental con-

dition (filled circle). Characteristic error bars are shown next to the rightmost

experimental points.
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resisting liquid, the sinking is significantly retarded while no

such retardation is noted in (b). The strong resistance to the

sinking of a partially immersed (�107�< b<�147� for

0:2 s < t < 0:8 s) sphere in (a) implies that the upward force

provided by the surface tension and the buoyancy can nearly

balance the solid weight. To compare the load supporting

capacity of the liquids, we plot the maximum value of the

density ratio D of a sphere that can be supported on each liq-

uid in equilibrium as the function of Bo in the insets of

Fig. 4 using the theory of Vella et al.2 We see that the sphere

sinking in glycerine has the density ratio much closer to the

maximum value that can be statically supported than the

sphere in silicone oil. Hence, as the sphere sinks to approach

the height where the supporting force of the liquid interface

is maximized, the sinking is significantly retarded and the

floatation is prolonged in Fig. 4(a). When b further increases,

the vertical component of the capillary force is now

decreased due to the reduced contact line length and the

deviation of /0 from p=2; thus, the sinking velocity

increases as shown for t > 0:8 s in (a).

In Fig. 4(b), the load bearing capacity of the silicone oil

is not sufficient to significantly retard the sinking sphere

because the density of the sphere is much higher than that

can be statically supported. Therefore, the sinking velocity is

higher than that on glycerine, leading to the increased contri-

bution of the viscous force. Such tendency can be quantita-

tively checked in Fig. 5, which plots the contribution of each

force component exerted on the sinking spheres of Fig. 4

with time. While the surface tension force Fs dominates over

the viscous drag Fd in (a), Fd is greater than Fs in (b) imply-

ing that the Young-Laplace equation falls far from accurate

in this case. This is why line II shows discernible difference

from line I in Fig. 4(b). Line III of Fig. 4(a) shows a greater

discrepancy from line I than that of (b), corresponding to the

dominant role of Fs in retarding the sinking sphere of (a).

The kinks in Fig. 5(a) are due to the sudden change in h at

t ¼ 0:10 s as described above.

B. Meniscus snapping

Now, we turn to the late stages of sphere sinking. In Figs.

4(a) and 4(b), the sphere is experimentally observed to sink

completely or to lose contact with air at t ¼ 0:89 s and 0.23 s,

respectively. However, our theoretical calculation, i.e., line I,

stops at around t ¼ 0:80 s and 0.10 s, respectively. We refer to

the time until which the theoretical prediction of the sphere

location is possible as tc. We stop computation at tc because

physically reasonable values of b are no longer obtained

beyond tc. Figure 6 plots b versus h that are measured and theo-

retically calculated even beyond tc. In the experiments, h
decreases (the sphere descends) leading to the increase of b
(the meniscus climbing up the sphere). On the other hand, a

theoretical relationship between h and b based on Eq. (15) pre-

dicts that b increases despite the increase of h when t > tc,

which is physically unacceptable. We scrutinized the shape

evolution of the meniscus to understand what happens near tc.
Figure 7(a) shows two vertical locations of the meniscus g1 and

g2, which, respectively, correspond to the elevation of the con-

tact line and the point where the line x ¼ 1:5a intersects with

the meniscus. We measured the temporal evolution of these

positions. The results, Fig. 7(b), show that the contact line (g1)

monotonically descends along the fall of the sphere. However,

the meniscus far from the contact line (g2) initially descends

(time range A) but stops descending at t ¼ 0:11 s but rather pla-

teaus until t ¼ 0:15 s (time range B), and then slightly rises

(time range C). The temporal evolutions of the experimentally

obtained meniscus shapes in each time range are shown in Fig.

7(c). The descent of the contact line despite the stationary me-

niscus of far field in time range B suggests that the meniscus

near the sphere gets stretched. We note that the moment g2

starts plateau matches tc at which the theoretical prediction of

the meniscus stops being possible, implying that the interface

stretching cannot be treated with the current model.

A few attempts were made previously to predict the

instant when the meniscus touching the solid surface snaps.

Vella3 assumed that a cylinder completely sinks when /0

becomes p=2. Lee and Kim17 postulated that the meniscus is

detached from a solid object that is lifted off the interface

when the free energy of the system equals that of the

detached state. For details of the free energy analysis, see the

Appendix. We employed both the conditions and marked the

FIG. 5. Contribution of each force component exerted on a sinking sphere:

(a) glycerine and (b) silicone oil.

072104-5 Sinking of small sphere at low Reynolds number Phys. Fluids 23, 072104 (2011)

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp



corresponding points in Fig. 4. We see that both the diamond

(result of free energy analysis) and the triangle (result of /0

condition) occur before the complete immersion of the

sphere. This implies that the sinking sphere and surrounding

fluid reach a lower energy state than the completely

immersed system and that /0 exceeds p=2, implying that a

neck occurs between the sphere and the undisturbed free sur-

face. The meniscus is observed to be detached from the

sphere when the neck closes. Analysis of the unstable snap-

ping process of the meniscus is also important in predicting

the failure of the liquid bridges connecting two solid objects

or a faucet and a falling drop,18,19,22 a mirror system to our

problem. Resolution of this issue in general requires inten-

sive numerical computations23–25 and consideration of iner-

tial effects,26 a topic not further pursued here.

C. Scaling law for sinking time

Figures 4(a) and 4(b) both show that the sphere sinks

with a rather constant velocity for a relatively long duration

(� 0:2 < t <� 0:8 s in (a) and � 0:05 < t <� 0:23 s in (b))

after a fast fall in the beginning. Since the sphere falls at a

constant rate for most of the sinking time, estimating this

steady velocity can give the characteristic sinking time. For

the steady sinking interval, the solid weight is dominantly bal-

anced by the surface tension force, Fs, and the viscous drag,

Fd (Fb is negligible as can be checked in Fig. 5). For a sphere,

the maximum value of Fs can be estimated as2 Fs

	 2pac sin2ðh=2Þ. For drag, we approximate Fd 	 6plUsa,

where Us denotes the constant sinking speed, because a

FIG. 6. The evolutions of b and h with time. The circles correspond to ex-

perimental measurements and the solid line is the solution of Eq. (15). (a)

Glycerine. (b) Silicone oil. Characteristic error bars are shown.

FIG. 7. (a) Schematic of a sphere straddling a gas-liquid interface. (b) The

temporal evolution of the vertical positions of the contact line (triangles)

and the meniscus at x ¼ 1:5a (circles) for a sphere of Fig. 4(b). A character-

istic error bar is shown. (c) Temporal evolution of the meniscus (black line)

and a wet part of the sphere (dashed line). Time increases in the direction of

the arrow taking the values 0.020, 0.032, 0.049, and 0.080 s (time range A);

0.111, 0.122, 0.133, and 0.145 s (time range B); and 0.168, 0.192, 0.212,

and 0.233 s (time range C).
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significant portion of the sphere area is wet by liquid in the

steady-velocity region. The force balance Fd ¼ Fw � Fs leads

to

Cas ¼
2

9
DBo� 1

3
sin2 h

2

� �
; (17)

where the nondimensional velocity Cas ¼ lUs=c is linearly

proportional to DBo but lower than that of a fully immersed

sphere by 1
3

sin2ðh=2Þ. Figure 8(a) shows a plot of Cas versus

DBo to compare the theory with experiments. The solid lines

I and II plot Eq. (17) with the lower and upper bounds of h
observed in the experiments, 120� and 150�, respectively.

We see that all the experimental results lie between the two

lines. The dashed line corresponds to the steady velocity of a

fully immersed sphere.

Using Us, we can predict the characteristic sinking time,

ts, taken for a sphere to get completely immersed in liquid.

The sinking depth, hd, a vertical distance from the unper-

turbed free surface that the sphere should travel before losing

its contact with the meniscus, is experimentally found to be

linearly proportional to the sphere radius for each liquid:

hd � a. Because ts � hd=Us, we get the following relation

for the nondimensional sinking time ss ¼ tsc=ðlaÞ:

ss � Ca�1
s ¼

2

9
DBo� 1

3
sin2 h

2

� �� ��1

: (18)

Figure 8(b) shows that the experimentally measured sinking

times (from the first contact to the complete immersion) follow

our scaling law as their dimensionless values collapse onto a

straight line with a slope 2.39. In physical terms, it takes lon-

ger for a sphere to sink as the liquid viscosity and surface ten-

sion and the contact angle increase, and as the sphere density

and radius decrease. But, we note that the liquid density plays

an insignificant role in sinking of small objects (Bo� 1)

because of small contribution of hydrostatic pressure force.

IV. CONCLUSIONS

Our experimental and theoretical analyses enabled us to

calculate the velocity of a tiny sphere sinking into a viscous

liquid. Also a scaling law was developed to predict the char-

acteristic sinking time as the function of the material proper-

ties and dimensions. To further understanding of the entire

process of sinking, it is natural to ask what happens in the late

stage when the meniscus becomes unstable and eventually

snaps. Despite a number of studies in the pinching of a liquid

bridge, relatively few studies have been reported on the snap-

ping of a meniscus following a solid object penetrating an air-

liquid interface. More detailed analysis on this topic combined

with sophisticated numerical analysis is called for. Based on

the understanding of two limiting situations of the sinking,

i.e., inertia dominant sinking13,27 and viscosity dominant sink-

ing (treated here), it will be of interest to consider both the in-

ertial and viscous effects to solve the dynamics with an

intermediate Re. In relation to the biological implication of

this problem, the sinking dynamics on a viscoelastic liquid is

worth for further study because the viscoelasticity of the fluid

contained in a pitcher plant is known to play a crucial role in

the insect-trapping function of the carnivorous plant.8
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APPENDIX: CONDITION FOR COMPLETE IMMERSION
USING FREE ENERGY ANALYSIS

From the viewpoint of free energy, we may anticipate

that upon complete immersion, the difference of the free

energy E of the sinking system from that of the immersed

state (Ef) vanishes: E� Ef ¼ 0. When a sphere sinks, the

total free energy change is the sum of the free energy change

due to the changes of the interfacial areas of the liquid with

the solid (DE1) and with the air (DE2) and the changes of the

gravitational potential energy of the liquid (DE3) and of the

sphere (DE4). Here, DE represents the difference of E and

FIG. 8. (a) The capillary number based on the steady sinking velocity, Cas

versus DBo. The solid and dashed lines are theoretical results. (b) The sink-

ing times ss plotted according to the scaling law (18). The best fitting

straight line has the slope 2.39. Squares and circles correspond the experi-

mental results in glycerine and silicone oil, respectively.
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that of the reference state Er corresponding to the sphere just

touching the gas-liquid interface: DE ¼ E� Er. In the fol-

lowing, we nondimensionalize the energy with ca2, thus,

Ê ¼ E=ðca2Þ. The free energy change due to the increase of

the wetted area is written as

DÊ1 ¼ �2pð1� cos bÞ cos h: (A1)

The free energy change associated with the change of the

air-liquid interfacial area is

DÊ2 ¼
2p
Bo

ð0

/0

X sec /� 1ð Þ dX

d/

� �
d/� p sin2 b; (A2)

where X ¼ x=lc. The work required to depress the liquid

weight displaced by the meniscus, represented as the hatched

region in Fig. 9, is written as DÊ31,

DÊ31 ¼
p

Bo

ð0

/0

XY2 dX

d/

� �
d/;

where

Y ¼ y=lc: (A3)

The free energy change associated with the work required to

depress the liquid underneath the sphere bounded by the wet-

ted surface of the solid, a vertical cylinder through the con-

tact line, and the unperturbed free surface represented as the

gray area in Fig. 9 is

DÊ32 ¼ pBo

�
1

2
cos2 aðsin2 b� sin2 aþ 1Þ

þ 1

3
cos aðcos3 b� cos3 a� 2Þ

� 1

4
ðcos4 b� 2

3
cos4 a� 1Þ

�
(A4)

for jhj 
 a and

DÊ32¼pBo
1

2

H

R

� �2

ð1�cos2 bÞþ2

3

H

R
ð�1þ cos3 bÞ

"

þ1

4
ð1�cos4 bÞ

�
(A5)

for jhj > a, where a is the angular position at which the orig-

inal free surface intersects the sphere, H ¼ h=lc, and

R ¼ a=lc. The total work done associated with depressing

liquid is DÊ ¼ DÊ31 þ DÊ32. The change of gravitational

potential energy of the sphere is

DÊ4 ¼
4

3
pDBoðcos a� 1Þ (A6)

for jhj 
 a and

DÊ4 ¼
4

3
pDBo

H

R
� 1

� �
(A7)

for jhj > a:
Now the total free energy change for the sinking sphere is

DÊ ¼ DÊ1 þ DÊ2 þ DÊ3 þ DÊ4: (A8)

For a fully immersed sphere, the free energy difference is

written as

DÊf ¼ �4p cos h� 4

3
pHRþ 4

3
pDBo

H

R
� 1

� �
: (A9)

The first term on the right hand side of Eq. (A9) corresponds

to the work required to fully wet the solid surface with liq-

uid, the second term is the work required to displace the vol-

ume of liquid occupied by the solid, and the last term is the

gravitational potential energy difference of the solid. In our

computation, we calculate DÊ� DÊf for each time step to

find the instant when E ¼ Ef , which is indicated as a dia-

mond in Fig. 4.
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