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Shape of a large drop on a rough hydrophobic surface
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Large drops on solid surfaces tend to flatten due to gravitational effect. Their shapes
can be predicted by solving the Young-Laplace equation when their apparent contact
angles are precisely given. However, for large drops sitting on rough surfaces, the
apparent contact angles are often unavailable a priori and hard to define. Here we
develop a model to predict the shape of a given volume of large drop placed on
a rough hydrophobic surface using an overlapping geometry of double spheroids
and the free energy minimization principle. The drop shape depends on the wetting
state, thus our model can be used not only to predict the shape of a drop but also
to infer the wetting state of a large drop through the comparison of theory and
experiment. The experimental measurements of the shape of large water drops on
various micropillar arrays agree well with the model predictions. Our theoretical
model is particularly useful in predicting and controlling shapes of large drops on
surfaces artificially patterned in microscopic scales, which are frequently used in
microfluidics and lab-on-a-chip technology. © 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4789494]

. INTRODUCTION

It is a fundamental problem in interfacial flow physics to describe the shape of a liquid drop
on a solid surface. The shape of a sessile drop determines the liquid-gas and liquid-solid interfacial
areas, which critically affect the rates of heat and mass transfer across the interfaces. Also the
dynamics of a liquid drop impacting on a solid surface must be eventually affected by the equilibrium
drop configuration. The understanding of the deformation due to external forcings such as flow-
induced stresses,! acoustic pressure,2 and substrate inclination>* can be built based on the accurate
information of the equilibrium drop shape.

For a small drop where the gravitational effect is negligible, the interior pressure of the drop is
uniform thus the interface must have a uniform curvature. The pressure jump across the interface
is given by the product of the surface tension coefficient and the curvature.® The length scale
at which the hydrostatic pressure pgl is balanced by the capillary pressure y/I is referred to as the
capillary length I, = [y/(pg)]"/?, where p and y are the density and the surface tension of the liquid,
respectively, and g is the gravitational acceleration. Therefore, a small drop whose characteristic
length is much smaller than /. can be approximated by a truncated sphere, allowing us to determine
the drop shape only with the contact angle and drop volume. However, as the drop size becomes
comparable to or exceeds the capillary length, the gravitational effect is no longer negligible thus the
shape deviates from the truncated sphere. To obtain the shape of a liquid drop distorted by gravity,
one needs to integrate the curvature related to the hydrostatic pressure by the Young-Laplace (YL)
equation, which rarely allows closed-form solutions.
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There have been many attempts to obtain approximate shapes of large sessile drops. Bashforth
and Adams’ solved the YL equation including the hydrostatic effects using iterative numerical
methods manually and provided the solutions in extensive numeric tables. One can predict the shape
of large drops in this manner only when their volume and contact angles are known a priori. This
model was compared with the shape of a small drop on superhydrophobic surfaces by Extrand and
Moon,® which also provided a simplified model with some geometrical approximations. Models
using a single spheroid were suggested which predicted the drop shape based on the given drop
volume and apparent contact angle.>”'! Other studies'>'* that have either numerically or analytically
found the drop profile have a common shortcoming that the contact diameter and/or the maximum
diameter of the drop should be measured a priori in addition to the drop volume and contact
angle.

Aided by the rapid advances in micro and nano-scale surface machining technology, the wetting
properties of rough hydrophobic surfaces are actively studied these days. Drops on hydrophobic
surfaces are more sensitive to gravitational distortion because the hydrostatic force exerted on
a small area at the bottom easily dominates over the capillary force and flattens their bottom.?
On rough hydrophobic surfaces, the mode of the solid-liquid contact plays an important role in
determining the drop shape as well as the Young angle 0y that is given by the liquid-solid-gas
combination. When the drop liquid is in intimate contact with the rough surface, it is commonly
referred to as the Wenzel state.'> When the drop is suspended on top of surface asperities, it is
referred to as the Cassie-Baxter state.'® It was recently pointed out that on solid surfaces of un-
even roughness distribution, the local surface conditions immediately adjacent to the contact line
determine the apparent contact angle.!” For uniformly textured solid surfaces, however, thermo-
dynamic analysis is able to describe macroscopic contact angles by characterizing the surface
with macroscopic quantities, such as surface roughness or wetted fractions.'®!° In particular, for
very small droplets sitting on rough surfaces, which can be modeled as spherical caps due to
negligible gravitational effects, minimization of the Gibbs free energy was shown to yield the ap-
parent macroscopic contact angles exactly matching the values suggested by Wenzel and Cassie
and Baxter for each wetting state.?? This implies that one can completely describe the shape of a
small drop with information of the wetting state and volume using the free energy minimization
principle.

Here we aim to provide a model to predict the shape of large drops sitting on rough surfaces
(hydrophobic, in particular) based on the wetting states and the free energy minimization principle.
While aforementioned previous works concentrated on predicting the drop shape using a known
contact angle, the model presented here does not resort to the apparent contact angle. Unlike the
Young angle 0y valid for smooth surfaces, the apparent contact angle on rough surfaces is in many
cases unavailable and difficult to define.”! Furthermore, the apparent contact angle calculated based
on the equations of Wenzel or Cassie and Baxter may differ from the angles of gravitationally
flattened large drops in general. Our model can also be used to infer the wetting state of a large drop
by matching the shapes that are experimentally observed and theoretically calculated by iteration.
In the following, we first present a relatively simple, yet accurate model to describe the shape of
a distorted large drop on hydrophobic surfaces. Considering that the flattening due to hydrostatic
pressure is more severe in the lower portion of the drop than in the upper, we suggest two overlapping
spheroids as a model of a drop on hydrophobic surfaces. Then, we investigate the morphology
of a large drop on rough hydrophobic surfaces depending on various factors such as the drop
volume, surface textures, and mode of solid-liquid contact (or wetting state), which are corroborated
experimentally.

Il. THEORY

The Young-Laplace equation relates the curvature of the interface to the pressure difference
across the interface AP as

1 1
— 4+ — ) = AP 1
V(R1+R2> ’ M

Downloaded 13 May 2013 to 147.46.246.236. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions



022102-3 Park et al. Phys. Fluids 25, 022102 (2013)

FIG. 1. The double-spheroid model of the drop contour. The upper (z > 0) and lower (z < 0) spheroid portions (solid line)
are drawn by Eqs. (3) and (4), respectively. The lower spheroid is intersected by the plane z = —zp. The dashed lines I and IT
correspond to the mirror images of the lower and upper half spheroid, respectively.

where R and R, are the principal radii of curvature. Under a gravitational field, AP should account
for the hydrostatic column effect, such that*?

1 1 2y  mg )
y<R1+R2>_Ro+Acs’ @
where Ry is the radius of the liquid drop at its apex where the two radii of curvature become
equal, m is the mass of the liquid above a plane where the pressure is measured, and A is the
cross-sectional area of the intersecting plane. Here, we propose a drop geometry consisting of two
truncated spheroids, which rigorously satisfies the YL equation at some designated boundary points,
as a global approximate solution to the YL equation. In the following, we describe a procedure to
determine the parameters which define the double spheroids.
Figure 1 shows the four boundary points of a model drop sitting on a hydrophobic surface, which
consists of a half spheroid occupying z > 0 and a part of a different spheroid truncated between
z =0 and z = —zp. The upper half spheroid with its apex at A(r = 0, z = b) is a solution to

r2 Z2

a—2+ﬁ=1 (z=0). 3)

It intersects with the lower truncated spheroid described as the following at B(a, 0):

’,.2 Z2

;-’_6_2:1 (=20 <z2=<0). (@)
The lower truncated spheroid meets the solid surface at C(rg, —zp) and its extension has the
bottom apex at D(0, —c). Since the upper and lower elliptic curves are connected at B(a, 0) where
their slopes are equal, the smoothness of the drop is mathematically conserved. The combined
geometry has four variables, a, b, c, and zy. Because of the inherent nonlinearity stemming from
the three-dimensional shape of a drop, two conditions—the upper elliptic approximation to the YL
equation at B(a, 0) and the constant total volume equation—are used to couple the variables a with
b and ¢ with zy. In addition, within the physically possible ranges of the two variables b(a) and c(zy),
the minimization of the total free energy of the drop is used to finally find the four variables.

A. Approximation for the upper spheroidal portion

In the cylindrical coordinates, the curvatures Rfl and Ry ! of the spheroidal surface are respec-
tively given by
1 b b

i _ , 5
R r(l + 7212 (a* — a%r? 4 b2r2)1/2 )
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FIG. 2. The relative error of the elliptic approximation to the Young-Laplace equation for a water drop of the volume 10 pul
on the substrate with the Young angle 107° and k = 0.94.

1 . Z// _ a4b 6
R_z - (1 + z/%)3/2 - (a* — a?r? + b2r2)3/2° (6)

where 7/ = dz/dr. At the drop apex A(0, b) the interface is spherical and the two radii become
equal with the curvature R U'=b/a?. At the maximum radius B(a, 0) we have Rfl = 1/a and
Ry U= a/b2. The mass m and the bottom area A, of the upper spheroid are simply m = %n,oazb
and A., = ma®. Thus we write the YL equation at B(a, 0) as

a 1 20 2

— 4+ - =— 4+ =8b, 7

2 a a? + 3'3 M
where 8 = pg/y. In this model, each point along the elliptic curve is suggested as a close approx-
imation to the actual YL solution. In Fig. 2, we have calculated the relative error € associated with
this approximation. We define € as the difference of the left-hand and right-hand sides of Eq. (2)
normalized by the right-hand side

R + Ry — M|
M

where M = 2b%/a + BV (z*)/m/r*(z*) with z* being the vertical distance from the apex, r(z*) the
radius at z*, r(z*) = a[l — (z*/h)*]"?, and V(z*) the volume of the truncated spheroid, V(z*)
= [ra®/(BbH)]Q2bH? — 3b%z + 7). Figure 2 shows that the relative error € is at most 2.7% for a drop
of 10 ul in volume sitting on a rough surface with the Young angle 107° and k = 0.94, where £ is
defined below.

(%) = 100 x

, ®)

B. Range of b

It can be shown that Eq. (7), a cubic equation for a, has one real root, which gives a variable b
as a function of a: b(a). Here we define the range of b using the volume constraint. When the contact
angle is 180°, if gravity is excluded, the drop is in a completely spherical shape having a radius
Ry = (% V)1/3, where V is the drop volume. However, due to gravity, even at the contact angle of
180°, the drop sags from a spherical shape; thus b < Ry. Although we can proceed with this range
of b, which subsequently defines the range of a via Eq. (7), it is possible to further narrow down
the ranges. The volume of the full spheroid having the identical major and minor axes to those of the
upper spheroid 4T”azb should be greater than the drop volume V. It is also evident that the volume

of the upper half spheroid %”cﬂb should be smaller than V. Combining these conditions leads to
3V £1%

—— < b
47 a? <bla) < 2ma

-, ©)
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C. Range of c and constant volume condition

We physically limit the range of ¢ along the similar line to Sec. I B. Because the lower half
spheroid sags more due to gravity than the upper half spheroid ¢ < b. The volume of drop excluding
the upper half spheroid V — Vi, where V| = %nazb, should be smaller than the volume of the lower
half spheroid 2T’Tazc. Thus we have the following range of c:

27_”12(V —Vi)<c<b. (10)

The total drop volume V = V; 4+ V, — V3, where V, is the volume of the lower half spheroid

and Vj is the volume of the spheroidal cap intersected by the z = —zy plane, can now be written as
2 2 1 a°
V = gnazb + gnazc — §JTC—2(2C3 —3cz0 + zg). (11)

Given c, 7 is calculated from the total volume constraint Eq. (11), thus the variable c can be expressed
as a function of zg: c(zo). Relations (9) and (10), at given b(a), define the corresponding domain of

c(20)-

D. The Gibbs free energy minimization

Now we determine the values of the parameters describing the double-spheroidal shape (a, b, c,
Z0) by minimizing the total Gibbs free energy of the drop. The total Gibbs free energy is the sum of
the interfacial energy of the drop area exposed to the ambient air (E,), that of the drop bottom (E}),
and the gravitational potential energy (E,)

E=E,+E,+E,. (12)

Given the drop volume V and three interfacial energies y;, = ¥, ¥sv, and y, with the subscripts
1, v, and s standing for liquid, vapor, and solid, respectively, we get E, = y;,(S1 + S» — S3), where
S is the surface area of the upper half spheroid S(a, b, 0), S, is the surface area of the lower half

spheroid S(a, c, 0), and Sj3 is the surface area of the lower spheroidal cap intersected by the z = —z9
and z = —c planes S(q, ¢, z9). These areas are given by the following formula:
14
S(x,y,2) = E {y2 [ex2 + y2 In(exy + xy)] —exzn — y4 In[exz + n]} , (13)

where e is the eccentricity of an ellipse, e = [1 — (x/y)*]"2, and n = [(exz)* + y*]"2. The interfacial
energy of the drop bottom E} is given by E;, = yh,nrgk, where k is a function of 6y and the mode
of contact between liquid and solid. When the surface is in intimate contact with the rough surface
(the Wenzel state), k is given by

k:kW:fySl_ysv, (14)

Yiv
where f'is the surface roughness defined as the ratio of the actual area to the projected area of the
solid surface. When the drop is suspended on top of surface asperities (the Cassie-Baxter state), the
bottom area consists of the liquid-vapor and liquid-solid interfaces. Then we can show that

k:kC=1+¢(M—l), (15)
Yiv

where ¢ is the wetted fraction of the solid surface. The difference of y;, and y is related to y;,
via Young’s equation: y;, — Y51 = ¥ip cOs 6y. For a drop having the shape of a truncated sphere,
thermodynamic analysis reveals that —k of Eqgs. (14) and (15) is exactly equal to the cosine of the
apparent contact angle in the Wenzel and Cassie-Baxter state, respectively, on the surfaces of uniform
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FIG. 3. Scanning electron microscopy images of the micropillars. (a) Array I; (b) array II; (¢) array III.

roughness.”’ We calculate the gravitational potential energy E, as

E; = pg [Vi(h) + z0) + Va_3ho_3]

2
= pg Enazb <§b + Zo) +1x 22 (6 — zﬁ)] : (16)
where h; is the z-directional distance of the center of mass of the upper half spheroid from the
substrate, V,_3 is the volume of the truncated lower half spheroid, which is V; subtracted by V3, and
h;,_3 the z-directional distance from the substrate to the center of mass of V,_3.

‘We numerically compute the Gibbs free energies within the two-dimensional range of b(a) and
¢(zp), then find the solution (a, b, ¢, zp) corresponding to the minimum Gibbs free energy state.
A rigorous mathematical proof of the uniqueness of the set (a, b, ¢, zp) obtained by the foregoing
procedure is yet to be established.

lll. EXPERIMENTAL

We measured the shape of water drops of various volumes on solids of varying surface
conditions—one flat hydrophobized silicon surface and three types of rough hydrophobized sili-
con surfaces. As rough hydrophobized silicon surfaces, a square array of cylindrical micropillars
(array 1), and two types of square arrays of square micropillars (arrays II and III) were fabricated
using the deep reactive ion etching process. The dimensions of the cylindrical pillars of array I
are such that [d, h, p] = [10, 2.7, 40] um, where d, h, and p are diameter, height, and pitch
of the cylinders, respectively. Array I was spin-coated with 0.6% aqueous polytetrafluoroethylene
(PTFE) solution at 1000 rpm for 30 s and baked at 200 °C for 30 min. The dimensions of the
square pillars of array II are such that [w, h, p] = [24, 40, 80] wm, where w is width of the square
pillar. For array III, [w, h, p] = [34, 40, 80] um. Figure 3 shows the images of the micropillar
arrays fabricated in this work. A flat silicon and arrays II and III were chemically treated with
tridecafluoro-1,1,2,2-tetrahydrooctyl-trichlorosilane (FOTS).>* We gently placed water drops with
volumes ranging between 5 and 45 ul on the four kinds of horizontal surfaces. It turned out that
both the arrays II and III supported the drops to result in the Cassie-Baxter state as can be checked
by air layer visible between liquid and solid, Figs. 4(c) and 4(d), while such air layer is absent on
the flat surface and array I, Figs. 4(a) and 4(b). To obtain the Young angle 6y, we measured the
contact angle of small water droplets (1 mm in diameter) placed on flat surfaces treated with PTFE
and FOTS, respectively, assuming the small droplets as a truncated sphere. The drop images were
captured with a 0.3 mega pixel CCD camera. The drop dimensions were measured by a software
and compared with theoretical predictions. All the measurements were carried out at 22 °C, which
gives yp, = 72.5 mJ/m? and 0y = cos ™' [(Yyp — ¥s1)/Yiv] = 120° and 107° on the surfaces treated
with PTFE and FOTS, respectively.

IV. RESULTS AND DISCUSSION

To demonstrate the minimization of the Gibbs free energy within the ranges of b and ¢, we
show numerical calculation results of the Gibbs free energies of a 5 ul water drop on array II and
a flat surface, whose results are displayed in Fig. 5. On array II, we have assumed that the drop
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FIG. 4. Comparison of the actual drop images with theoretical models. (a) Flat surface; (b) array I; (c) array II; (d) array
III. In (a), the dashed and solid lines correspond to the spherical-cap model and the double-spheroid model, respectively,
In (b)—(d), the dashed line corresponds to the spherical-cap model and the dot-and-dash and solid lines correspond to the
double-spheroid profiles assuming the Wenzel state and the Cassie-Baxter state, respectively.

is in the Cassie-Baxter state for which the wetted fraction of the array ¢ = 0.09 and k = 0.94.
The corresponding experimental image of Fig. 4(c) shows the pillars supporting the drop in the
Cassie-Baxter or fakir state.>* The flat surface hydrophobized by FOTS has k = 0.30 via Eq. (14)
with f= 1. In the computation, the Gibbs free energy values are stored in a matrix whose individual
elements represent a square grid of 1 um in side length. Figure 5 shows the contour maps of the
Gibbs free energies over the two-dimensional space bounded by the limits of b and c. Two solid
lines indicate the range of b(a) given by relation (9) and two dashed lines show the range of c(z)
given by relation (10). Because the drops of the same volume are used on the two surfaces, the areas
defined by the ranges of b(a) and c(zp) are equal. The location of the free-energy minimum, shown
as a black dot, determines the drop shape on each surface.

In Figs. 5(a) and 5(b), the minimum point on array II is located at b = 1.09 mm and c
= 0.82 mm. Because the lower and upper limits of b correspond to a complete spheroid and a half
spheroid, respectively, as can be seen in relation (9), the fact that the free-energy minimum point is
located close to the solid line of the lower limit of » indicates that the drop shape is nearly spherical.
In relation (10), the lower and upper limits of ¢ correspond to the contact angle of 180° and 90°,
respectively. In Figs. 5(a) and 5(b), the free-energy minimum is located very close to the lower limit
of ¢ at given b, indicating that the drop must have a very high contact angle. This corresponds to the
experimental measurement of the apparent contact angle 160°. Equations (7) and (11) determine the
other variables ¢ = 1.12 mm and zyp = 0.73 mm, respectively.

For a drop on the flat surface, Figs. 5(c) and 5(d), the free-energy minimum is located at b
= 1.19 mm, in the middle of the upper and lower limits of b. At ¢ = 0.77 mm, the minimum point is
rather far from the lower limits due to the relatively low contact angle. Again, we can calculate the
other variables as @ = 1.23 mm and zp = 0.28 mm.

Our contour map of the Gibbs free energy provides information beyond the shape of the mini-
mum energy state. In Figs. 5(a) and 5(b), the free-energy minimum point on the superhydrophobic
array Il is surrounded by the steep downslopes of energy values. Since the gradients toward the min-
imum point are large, the variations of the drop profile and of the contact angle near the equilibrium
due to external disturbances are expected to be small. On the other hand, the free-energy minimum
point on the flat hydrophobic surface in Figs. 5(c) and 5(d) is approached by mild downslopes. This
suggests that the drop shape and contact angle are more likely to vary due to small perturbations
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FIG. 5. The Gibbs free energy contour maps of a water drop with the volume of 5 ul. The Gibbs energy values of the drop
on array II in (a) three-dimensional and (b) two-dimensional plots. The Gibbs energy values of the drop on the flat surface
in (c) three-dimensional and (d) two-dimensional plots. The solid and dashed lines bound the range of b and ¢, respectively.
The minimum free-energy point is denoted by a black dot.

caused by chemical heterogeneity, thermal or mechanical fluctuations. We suggest that this may be
correlated with the contact angle hysteresis, but further study on this aspect is called for.

We compare the theoretical drop profiles with the actual drop images in Fig. 4. In the double-
spheroid model, we try the values of k corresponding to the Wenzel and the Cassie-Baxter states
for each rough surface. We also draw the profiles from the spherical-cap model which utilizes the
drop volume and the experimentally measured apparent contact angle as input conditions. For
the 5.0 1 drop on the flat hydrophobic surface, Fig. 4(a), the spherical-cap model differs little from
the experimental image and the double-spheroid model. It is due to a small size of the drop (Ry
= 1.1 mm) compared to /. = 2.7 mm. However, as the drop size increases, the drop flattens as
compared to the spherical cap shape, which is correctly predicted by our double-spheroid model.
In Fig. 4(b), we compare the images of drops on array I with the spherical-cap model and the
double-spheroid model assuming the Cassie-Baxter state (k = 0.98) in the left-half plane and with
the double-spheroid model assuming the Wenzel state (k = 0.52) in the right-half plane. Except for
the smallest drop (5 wl in volume), the models in the left-half plane exhibit considerable difference
from the experiments. Our double-spheroid model assuming the Wenzel state agrees fairly well
with experiments. On arrays II and III, whose results are shown in Figs. 4(c) and 4(d), respectively,
the experimental drop shapes are compared with the spherical-cap model and the double-spheroid
model assuming the Wenzel state (k = 0.47 and 0.54 for array II and III, respectively) in the left-half
planes and with the double-spheroid model assuming the Cassie-Baxter state (k= 0.94 and 0.87
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FIG. 6. Representative dimensions of the drops versus volume. (a) Maximum diameter; (b) base diameter; (c) height. The
dotted line corresponds to the spherical-cap model, the dashed line to the double-spheroid model of the Wenzel state, the
solid line to the double-spheroid model of the Cassie-Baxter state, and the dot-and-dash line to the double-spheroid model of
the flat surface. The circles denote the experimental results.

for array II and III, respectively) in the right-half planes. In these cases, the double-spheroid model
using the Cassie-Baxter state agrees well with experiment. These results illustrate the accuracy of
our double-spheroid model in predicting the shape of gravitationally flattened large drops on rough
hydrophobic surfaces. Also, we find that our theory can be used to deduce the wetting state of a
large drop on rough surfaces by matching its actual shape with theoretically predicted profiles.

In Fig. 6, we compare the measured dimensions of the drops, i.e., maximum diameter (2a), base
diameter (2r¢), and height (b + zo), with the theoretical values. On the flat surfaces, the maximum
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FIG. 7. Viewing angle with respect to the pillar lattice. (a) 0°; (b) 45°.

and base diameters are underestimated and the height is overestimated by the spherical-cap model,
while the double-spheroid model accurately predicts each length. For micropillar arrays, the double-
spheroid model of the Wenzel state predicts the largest maximum and base diameters and the
smallest height among the models. The experimental measurements of array I are in good agreement
with the double-spheroid model of the Wenzel state. The base and maximum diameters predicted
by the double-spheroid model of the Cassie-Baxter state lie between the values predicted by the
double-spheroid model of the Wenzel state and the spherical cap model. Also, the height of the Cassie-
Baxter state is between the other two models except for small drops on array I. The experimental
measurements of arrays II and III agree well with the double-spheroid model of the Cassie-Baxter
state. The difference between the experimentally measured base diameter and the spherical-cap
model increases with the drop volume, quantitatively indicating the gravitational flattening of the
lower portion of the drop. In particular, such difference is greatly magnified in arrays II and III,
revealing a higher sensitivity of the Cassie-Baxter drop’s base area to gravitational flattening than
the Wenzel drop’s.

In the foregoing measurements, we used the lengths of drops as viewed at 0° with respect to
the lattice of pillars (Fig. 7). Recently it was pointed out that the drop shape near the bottom can be
asymmetrical when placed on micropillar arrays due to pinning of the contact line.?> To quantify the
effects of viewing angle on the length measurements, we measured the maximum and base diameters
of water drops of the same range of volume as above on the three arrays viewed at 45° with respect
to the lattice. The difference of maximum diameters of the drops of the same volume on the same
array was below 1% for all the cases. The difference of the base diameters was the greatest for the
smallest drops (5 ¢l in volume) and it grew as the pillar height increased. For drops of 5 ul volume
on arrays I and III, the difference in the base diameter was 2.4% and 6.0%, respectively. For larger
drops of 15 and 45 p1 volume, the difference in the base diameter was at most 3.6% for all the arrays.
These results are consistent with Papadopoulos et al.,>> which reported that the drop profile becomes
axisymmetric at a length scale 1 order of magnitude larger than the pillar height. Our comparison
suggests that the drop asymmetry due to contact line pinning at micropillars (of maximum 40 pum
height) hardly affects the maximum diameter values, which is measured at least 0.5 mm above the
solid surface. The base diameter varies depending on the viewing angle within a limited range for
small drops on tall pillar arrays. However, the drops having the nominal radius Ry much greater
than the pillar height (Ry = 1.5 mm for a 15 pl-volume drop), the variation of the base diameter
depending on the viewing angle is insignificant.

As mentioned above, the gravitational distortion becomes severe near the bottom of the drop,
which leads us to adopt the double-spheroid model to account for the variation of the curvature
along the z-direction. To quantify the degree of gravitationally induced flattening, we calculate the
eccentricities e of the upper and lower ellipses for different conditions and show the results in Fig. 8.
As e increases from 0, the ellipse deviates from being circular. The figure shows that within a single
drop, the eccentricity of the lower spheroid is much greater than the upper one due to the effect of
gravitational distortion. The eccentricity grows with the increase of the Bond number, defined as
Bo = pgD?/y with D being the diameter of a sphere with the identical volume as the drop and the
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FIG. 8. Eccentricity of the upper (solid line) and lower (dashed line) ellipses as a function of Bo for varying k. k increases
in the direction of the arrow taking the values 0.3, 0.6, and 0.9.

decrease of water repellency of the surface. While e of the upper spheroid increases from a very
small value (less than 0.2) to about 0.5 with the increase of Bo, the lower spheroid exhibits a high
eccentricity even at small drop volumes but its increase is not as steep as that of the upper spheroid.
This signifies that even drops of small volumes can be locally flattened at the bottom, which is
consistent with the previous experimental observations.®

The flattening of large drops can also be quantified by measuring the peak height (b + zp) or
the z-coordinate of the maximum diameter (i.e., equator height zp) depending on drop size. Figure 9
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FIG. 9. Depressions of the peak and equator height versus Bo for different water repellency, quantified by k. (a) Dimensional
peak height depression versus Bo; (b) dimensionless peak height depression iy = h, /D versus Bo. (Inset) The Bond number
yielding &4 = 0.1 versus k; (c) dimensional depression of the equator height zg = z; — zo versus Bo. (d) Dimensionless
depression of the equator height 24 = z,/V'!/3 versus Bo. k increases in the direction of the arrow taking the values 0.3, 0.5,
0.7, and 0.9.
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plots the decrease of peak height 7; = hy — (b + zp) and the depression of equator height z; = z;
— 7o with &, and z, being the height of the apex and equator of the spherical cap with the contact angle
6 = cos ~!(—k), respectively. We also plot their values scaled by D, hy = hy/D and 2, = z4/D,
versus Bo. We see that the depressions increase with the drop size (Bo) and the water repellency (k).
On the surfaces of strong water repellency (e.g., k = 0.9), the depression of the peak and equator
height exceeds 10% even before Bo reaches unity, revealing the non-negligible effect of gravity
on small drops sitting on superhydrophobic surfaces. Our model allows us to predict the Bond
number at which the peak height depression reaches 10% for different k, as displayed as the inset in
Fig. 9(b). For drops on moderately hydrophobic surface (e.g., k = 0.3), the depression of peak
height reaches 10% when the Bond number becomes 3, which corresponds to 4.71 mm in spherical
drop diameter. At the same Bond number (Bo = 3), the depression reaches 21% on a surface with
k = 0.9, again revealing the great influence of water repellency on drop height depression.

V. CONCLUSIONS

We have developed a novel model to describe the profile of a large drop on a rough hydropho-
bic surface using an overlapping geometry of double spheroids and the free energy minimization
principle. While the Bashforth-Adams model that directly solves the Young-Laplace equation needs
a contact angle to close the mathematical formulation to find the drop profile of a given volume,
our model utilizes the wetting state that gives the interfacial free energy. Our model is advantageous
in that one can predict the drop shape without measuring the actual contact angle, which is often
harder than measuring the other linear dimensions of a drop, such as height and base diameter. Also,
one can infer the wetting state of a large drop, without resorting to the apparent contact angle, by
merely comparing measured linear dimensions of the drop with the predictions of our model. By
comparing the drop profiles viewed at 0° and 45° with respect to the pillar lattice, the effects of
asymmetry of the drop profile caused by contact line pinning on the linear dimensions are found to
be insignificant for drops having sizes one or more orders of magnitude larger than the pillar height.
The excellent agreement of our theory and experimental measurements has verified the capability of
our model in predicting the shape and wetting state of large drops. Furthermore, the computational
expense required in our model, which consists of algebraic equations, is much cheaper than the
Bashforth-Adams model that solves the nonlinear partial differential equations. We point out that
the apparent contact angle of drops placed on a solid surface can vary within a range when the
contact angle hysteresis (CAH), i.e., the difference between the critical advancing and receding
contact angles, is present although it has been ignored by most of the studies addressing the static
shapes of sessile drops. Although such an effect is insignificant for superhydrophobic surfaces with
a very low CAH, it is worth further study to investigate how the difference of the apparent and
equilibrium contact angles affects the linear dimensions such as the height, base, and maximum
diameters of large drops on rough hydrophobic surfaces. Finally we note that the topography of
solid surface needs to be known a priori in our model to evaluate k. Thus the model is particularly
useful in predicting shapes of large drops on artificially prepared surfaces with micro and nano-scale
roughness, which are widely used in many technological areas including biochips,?® adhesives,?’
sensors,28 and actuators.?
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